Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Конформные отображения



Геометрический смысл модуля и аргумента аналитической функции. Пусть функция w=f(z) является аналитической в некоторой области D. Выберем произвольную точку и проведем через нее произвольную гладкую кривую , целиком лежащую в D. Функция f(z) осуществляет отображение области D комплексной плоскости (z) на область G комплексной плоскости (w). Пусть точка отображается в точку , а кривая отображается в кривую .Обозначим через угол, составленный касательной к в точке с осью Ox, а через - угол, составленный касательной в точке с осью Ou. Так как функция f(z) аналитическая, то существует производная в любой точке области D. Предположим, что в D. Производную можно представить в показательном виде, т.е. записать в виде:

(10)

Рис.6.

Выберем такой способ стремления , при котором точки лежат на кривой . Тогда соответствующие им точки Комплексные числа и на плоскости будут изображаться векторами секущих к кривым и соответственно, причем и - длины векторов секущих, а и углы, образованные этими векторами и положительными осями. При эти векторы секущих переходят в касательные к кривым и в точках и .Из равенства (10) следует, что , т.е. аргумент производной имеет геометрический смысл разности угла вектора касательной кривой и угла вектора касательной . Так как производная не зависит от способа предельного перехода, то она будет той же самой для любой другой кривой, проходящей через точку . Другими словами, дуги, проходящие через точку z0 на плоскости z при отображении w=f(z) повернутся на один и тот же угол на плоскости w. Когда угол между любыми кривыми на плоскости (z), проходящий через точку z0, равен углу между кривыми и на плоскости (w),то это называется свойством сохранения (консерватизма) углов.

Аналогично из равенства (10) получим: , т.е. с точностью до величин более высокого порядка малости имеет место равенство: .

Последнее соотношение также не зависит от способа выбора кривой и геометрический смысл его состоит с том, что при отображении, осуществляемом аналитической функцией, удовлетворяющей условию бесконечно малые линейные элементы (бесконечно малые дуги) преобразуются подобным образом, причем модуль производной называется коэффициентом подобия. Такое свойство данного отображения называется свойством постоянства растяжения, поэтому k еще называют коэффициентом растяжения. Говорят, что при k >1 – растяжение, а при k <1 – сжатие.

Определение конформного отображения и основные свойства. Определение 17. Взаимно-однозначное отображение области D комплексной плоскости (z) на область G комплексной плоскости (w) называется конформным, если оно во всех точках z D обладает свойством сохранения углов и постоянством растяжения.

Теорема 6. Для того, чтобы комплексная функция w=f(z) конформно отображала область D плоскости (z) на область G плоскости (w), необходимо и достаточно, чтобы она была аналитической в D и ни в одной точке области D.

Необходимость. Предположим. что функция w=f(z) осуществляет конформное отображение. По определению это означает выполнение свойств сохранения углов и постоянства растяжения. Возьмем на плоскости z произвольную точку z0 и в ее окрестности две точки: z1 и z2. На плоскости w им будут соответствовать точки w0, w1, w2

Рис.7.

С точностью до бесконечно малых величин будут выполняться соотношения: , а из постоянства углов следует: . Из равенства для аргументов следует, что углы равны не только по абсолютной величине, но и по направлению. В результате получим: .

Таким образом из последних двух равенств следует с точностью до бесконечно малых величин выполнение следующих равенств: . По причине произвольности выбора точки z0 и точек z1,z2 из ее окрестности следует, что существует , Достаточность. Пусть производная существует и не равна нулю в области D, тогда из геометрического смысла производной следует выполнение свойств сохранения углов и постоянства растяжения, а это по определению означает, что функция осуществляет конформное отображение. ■

Конформное отображение используется для решения задач математической физики, гидродинамике и аэродинамике, теории упругости, теории электромагнитных и тепловых полей. Основная задача теории конформного отображения заключается в нахождении функции комплексного переменного w=f(z), которая отображала бы заданную область D плоскости z на заданную область G плоскости w. В решении этой задачи важную роль играет теорема.

Теорема 7. Всякую односвязную область D комплексной плоскости z, граница которой состоит более чем из одной точки можно конформно отобразить на внутренность единичного круга <1 комплексной плоскости w. (без доказательства).

Из данной теоремы следует возможность конформного отображения данной области D на заданную область G, если граница каждой из областей состоит более чем из одной точки. Тогда, отобразив эти области на вспомогательный круг <1, мы получим искомое отображение. Конформное отображение многосвязной области на односвязную область невозможно, но в ряде случаев возможно конформное отображение областей одинаковой связности. Рассмотрим два конформных отображения.

Линейное отображение. Линейным называется отображение, осуществляемое линейной функцией где a и b - комплексные числа.

Такое отображение является взаимно-однозначным и конформным на всей комплексной плоскости поскольку Линейное отображение оставляет неподвижным две точки:

Пусть Представим линейное отображение в виде трех простейших.

1) Преобразование поворота всей плоскости z на угол вокруг начала координат:

;

2) Преобразование подобия с центром подобия в начале координат, т.е. растяжения при >1 и сжатия при 0< <1:

;

3) Параллельный перенос на вектор b:

Пример 4. Найти функцию, которая отображает треугольник с заданными вершинами z1=-1, z2=i, z3=1 в треугольник с вершинами w1=0, w2=-2+2i, w3=4i.

Решение. Построим искомую функцию как суперпозицию трех элементарных преобразований.

Рис.8.

1) - поворот на угол против часовой стрелки;

2) -растяжение в два раза;

3) - сдвиг на две единицы вверх;

Искомая функция имеет вид:

Дробно-линейное отображение. Дробно-линейная функция , где a,b,c,d - комплексные числа осуществляет дробно-линейное отображение расширенной комплексной плоскости z на расширенную комплексную плоскость w. Найдем производную: если .

Определение 18. Точки z1 и z2 называются симметричными относительно окружности , если они лежат на одном луче, проходящем через точки z1, z2 и точку z0, причем .

Рис.9.

Инверсией относительно окружности называется преобразование расширенной комплексной плоскости на себя, переводящее каждую точку z1 плоскости в точку z2, симметричную относительно этой окружности. Рассмотрим отображение, заданное функцией и обозначим Пользуясь свойством модуля, можно записать: . Отсюда следует, что рассматриваемое отображение есть инверсия относительно окружности радиуса R, с центром в начале координат с последующим зеркальным отображением, относительно действительной оси.

Рис.10.

По аналогии с линейным отображением, представим дробно-линейное отображение как суперпозицию простейших преобразований. Выделим сначала целую часть дроби:

Простейшие преобразования будут следующие:

1) параллельный перенос на : ;

2) преобразование инверсии относительно окружности радиуса R с центром в начале координат с последующим зеркальным отражением относительно действительной оси: ;

3) поворот относительно начала координат: ;

4)параллельный перенос на : .

Пример 5. Найти область, в которую перейдет окружность при дробно-линейном отображении .

Решение.

Рис.11.

Это будет окружность, которая получается после следующих преобразований:

1) перенос на 1 вниз:

2) инверсия относительно , направление обхода изменится:

3) поворот на 90 градусов:

4) перенос на 1 вниз:

Свойства дробно-линейного отображения. Без доказательства сформулируем следующие свойства.

1.Конформность. Дробно-линейная функция конформно отображает расширенную комплексную плоскость z на расширенную комплексную плоскость w.

2.Единственность. Существует единственная дробно-линейная функция, которая три заданные различные точки z1,z2,z3 плоскости z отображает в три различные точки w1,w2,w3 плоскости w и это отображение задается равенством: .

3.Круговое свойство. При дробно-линейном отображении, образом любой окружности в широком смысле является окружность(в широком смысле, т.е. окружность или любая прямая).

4.Принцип отображения границ. При дробно-линейном отображении область, лежащая внутри окружности, преобразуется в область, лежащую либо внутри, либо вне преобразованной окружности(граница отобразится в границу).

5.Принцип симметрии Римана-Шварца. При дробно-линейном отображении точки, симметричные относительно окружности, отображаются в точки, симметричные относительно преобразованной окружности(симметрия в смысле инверсии).

Пример 6. Задана верхняя полуплоскость плоскости z и произвольная точка z0. Найти функцию, которая отобразит ее в единичный круг плоскости w так, чтобы z0 отобразилась в центр круга.

Решение.

Рис.12.

Пусть , тогда согласно принципу отображения границ, действительная ось на плоскости z отобразится в окружность единичного радиуса. По свойству симметрии точка отобразится в точку . Таким образом, учитывая это построим функцию . Если рассмотреть точки z, лежащие на действительной оси, а это точки вида: , то для них будут выполняться равенства: , т.к. они все равноудалены от точки, лежащей на действительной оси, т.е. имеем, что все точки действительной оси отобразятся во все точки единичной окружности Отсюда получаем, что если рассмотреть модуль Искомое отображение будет иметь вид: .

Решить еще одну задачу на дробно-линейное отображение и вставить обе в первый модуль!





Дата публикования: 2015-01-23; Прочитано: 2191 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...