Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теории происхождения жизни на Земле. Основные этапы развития жизни на Земле (химический, предбиологический, биологический, социальный). 1 страница



Возникновение жизни или абиогенез — процесс превращения неживой природы в живую.В разное время относительно возникновения жизни на Земле выдвигались следующие гипотезы:Гипотеза стационарного состояния жизни, Гипотеза самозарождения, Гипотеза «первичного бульона»Гипотеза стационарного состояния жизни: Эта теория была распространена в Древнем Китае, Вавилоне и Древнем Египте в качестве альтернативы креационизму, с которым она сосуществовала. Аристотель (384—322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Согласно этой гипотезе, определённые «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.Согласно теории стационарного состояния, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности — либо изменение численности, либо вымирание.В 1924 году будущий академик Опарин опубликовал статью «Происхождение жизни», которая в 1938 году была переведена на английский и возродила интерес к теории самозарождения. Опарин предположил, что в растворах высокомолекулярных соединений могут самопроизвольно образовываться зоны повышенной концентрации, которые относительно отделены от внешней среды и могут поддерживать обмен с ней. Он назвал их Коацерватные капли, или просто коацерваты.Согласно его теории процесс, приведший к возникновению жизни на Земле, может быть разделён на три этапа:Возникновение органических веществ, Возникновение белков, Возникновение белковых тел.Астрономические исследования показывают, что как звёзды, так и планетные системы возникли из газопылевого вещества. Наряду с металлами и их оксидами в нём содержались водород, аммиак, вода и простейшийуглеводород — метан.Условия для начала процесса формирования белковых структур установились с момента появления первичного океана (бульона). В водной среде производные углеводородов могли подвергаться сложным химическим изменениям и превращениям. В результате такого усложнения молекул могли образоваться более сложные органические вещества, а именно углеводы.Наука доказала, что в результате применения ультрафиолетовых лучей можно искусственно синтезировать не только аминокислоты, но и другие органические вещества.
4. Эволюционно обусловленные уровни организации жизни на Земле.
Живым в современной биологии считается организм, обладающий совокупностью свойств:Сложная, упорядоченная структура. Уровень организации значительно выше, чем в неживых системах.Получение энергии из окружающей среды, использование ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.Активное реагирование на окружающую среду. Способность реагировать на внешние раздражители – универсальное свойство всех живых существ, как растений, так и животных.Способность не только изменяться, но и усложняться. Они могут создавать новые органы, отличающиеся от породивших их структур. *Способность к самовоспроизведению.Способность передавать потомкам заложенную в них информацию, содержащуюся в генах – единицах наследственности. Эта информация в процессе передачи может видоизменяться и искажаться. Это предопределяет изменчивость живого.Способность приспосабливаться к среде обитания и своему образу жизни. В ходе эволюции происходит повышение уровня организации, усложнение живого (от низших организмов к высшим). Формирование каждой следующей ступени иерархии уровней происходит на основе предыдущей, которая структурно в неё входит (см. также видообразование).Усложнение живого вещества, как всякий длящийся процесс, тоже развертывается во времени, однако самого времени, в непосредственном значении и активном действии, в нем нет; оно неявно входит в него как тактовая частота смены поколений и выражается через изменение фазовых состояний поля жизни. Здесь время представлено числом произведенных эволюционных шагов - завершенных больших и малых биогеохимических циклов. Развитие внекультурного живого вещества обусловлено, главным образом, пространственно-ресурсными ограничениями биосферы. Этот фактор - геометрическая и материально-энергетическая ограниченность жизненного пространства Земли - проявляется в эволюции биологических видов как тенденция наилучшего приспособления организма к внешней природной данности, среде жизни. Стремясь к максимальной адаптации, видовой организм превращается в органический придаток геологической структуры, "автоматизируется" в своем жизнепроявлении и всем существом прочно врастает в биокосный монолит планеты. В конечном счете, внекультурные биологические виды оказываются в хвосте мирового эволюционного процесса, становятся, в космическом масштабе времени, живыми ископаемыми, поскольку неотделимы от физической структуры планеты. Классификация: Характеризуются специфическими взаимодействиями компонентов и отчётливыми особенностями взаимоотношений с ниже и выше лежащими системами.Могут использоваться различные модели и подходы: Химико-волновая, кибернетическая, энтропийно-эволюционная и другие модели, описанные в статье Жизнь.При классификации уровней обычно, для полноты представления, могут включаться уровни неживой материи. В 20-е гг. XX века в философии и науке сформировался системный подход, согласно которому живой мир можно рассматривать как совокупность систем разных уровней организации. При этом элемент системы одного уровня может представлять собой целую систему на другом уровне организации. По Вечирко Д С. Тимофеев-Ресовский выделяет следующие уровни организации жизни:Молекулярно-генетический.Онтогенетический (организменный, уровень особей).Популяционно-видовой.Биоценотический.Биосферный. Критерий масштабности. Структурный (системный) анализ обнаруживает следующие уровни организации жизни:Биосферный - вся совокупность живых организмов Земли вместе с окружающей их природной средой.Уровень биогеоценозов - структуры, состоящие из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс – экосистему.Популяционно-видовой уровень - образуется свободно скрещивающимися между собой особями одного и того же вида, cовокупность особей одного вида.Организменный и органно-тканевый уровни - отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.Клеточный и субклеточный уровни - отражают особенности специализации клеток, а также внутриклеточные структуры. На этом уровне происходят процессы жизнедеятельности (обмен веществ, питание, дыхание, раздражимость и т. д.).Молекулярный уровень - отражает особенности химизма живого вещества, а также механизмы и процессы передачи генной информации.
5. Человек в системе природы. Специфика проявления биологического и социального в человеке.

Проблема взаимосвязи и взаимодействия человека и природы на протяжении всей человеческой истории была предметом пристального внимания людей. Самая суть человеческого способа существования в мире заключена во взаимодействии с природой, которая представляет собой всё в мире, что не создано руками человека, и всё то, с чем он так или иначе взаимодействует, т.е. вся совокупность условий существования человека и человечества составляет природу.
Формы взаимодействия человеческого общества с природой достаточно много образны. Как правило, происходящие в обществе природные процессы приобретают социальную форму, а природные, прежде всего биологические, закономерности выступают как биосоциальные. Взаимоотношения общества и природы не являются чем-то статичным и неизменным. Они меняются по мере развития общества. За основу периодизации этапов взаимосвязи общества и природы, как правило, берётся характер освоения человеком природы, т.е. основное из отношений человека с окружающей средой. Первый из этапов взаимодействия общества и природы получил название биогенного периода, или присваивающего. Для него характерно то, что древние люди жили за счёт присвоения продуктов биосферы и оказывали обратное воздействие на природу главным образом непосредственно своими естественными органами и силами. По мере того как научно-техническая мощь человека неуклонно возрастает, становится сопоставимой с масштабами действия сил природы, люди получают всё больше поводов для того, чтобы убедиться в опасности неограниченного, бесконтрольного и необдуманного употребления этой мощи. Всё это побуждает общество искать новые формы взаимоотношений с природой. Основу перехода от техногенного к новому периоду - ноогенному или системно-преобразующему обосновал В.И.Вернадский, который видел её в том, что человечество, вооружённое научной мыслью, превращается в мощную силу развития нашей планеты. С захватом человеком биосферы растёт осмысленное осознание единства человека и природы, необходимости их коэволюции, т.е. сотрудничества.Обретение социальных качеств человеком происходит в процессе социализации: то, что присуще конкретной личности, есть результат освоения культурных ценностей, которые имеются в конкретном обществе. Одновременно это и выражение, воплощение внутренних возможностей личности. биологические факторы — прямохождение, развитие руки, большой и развитый мозг, способность к членораздельной речи; основные социальные факторы — труд и коллективная деятельность, мышление, язык и общение, нравственность.Под его биологическими особенностями понимают то, что сближает человека с животным (за исключением факторов антропогенеза, которые явились основанием для выделения человека из царства природы), — наследственные признаки; наличие инстинктов (самосохранения, полового и др.); эмоции; биологические потребности (дышать, питаться, спать и т.д.); сходные с другими млекопитающими физиологические особенности (наличие одинаковых внутренних органов, гормонов, постоянная температура тела); возможность использовать природные предметы; приспособление к окружающей среде, продолжение рода. Социальные особенности характерны исключительно для человека — способность производить орудия труда; членораздельная речь; язык; социальные потребности (общение, привязанность, дружба, любовь); духовные потребности (мораль, религия, искусство); осознание своих потребностей; деятельность (трудовая, художественная и т.п.) как способность преобразовывать мир; сознание; способность мыслить; творчество; созидание; целеполагание.Человека нельзя сводить исключительно к общественным качествам, поскольку для его развития необходимы биологические предпосылки. Но нельзя свести его и к биологическим особенностям, так как личностью можно стать только в обществе. Биологическое и социальное нераздельно слито в человеке, что делает его особым биосоциальным существом.
6. Клетка как элементарная структурно-функциональная единица жизни. Формы клеточной (про- и эукариоты) и доклеточной (прионы, вироиды, вирусы) организации жизни на Земле.

Кле́тка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом. Прокариоты — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Эукариотическая клетка.Эукариоты — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды. Ви́рус — микроскопическая частица, состоящая из белков и нуклеиновых кислот и способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружен также вирус, поражающий другие вирусы[1]. Вирусы представляют собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку (капсид). Наличие капсида отличает вирусы от других инфекционных агентов, вироидов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот.Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих в свою очередь из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (пикорнавирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме. 3.Клеточная теория. История и современное состояние. Значение ее для биологии и медицины. Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Современная клеточная теория включает следующие основные положения: Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.
7. Клеточная теория. История и современное состояние. Значение ее для биологии и медицины.
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Основные положения клеточной теории.Современная клеточная теория включает следующие основные положения: Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток. Дополнительные положения клеточной теории: Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен:Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см.ниже).В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы"). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).Клетки многоклеточных тотипотенты, т. е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке. Современная клеточная теория. Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов. Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории: 1.Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, "одичавшими" генами.2.Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.3.Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.4.Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.5.Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, т.е. образуется оно в результате метаболизма клеток.6.Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

. 8Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Нуклеиновые кислоты, их химический состав, биологическая роль. Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты — ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.Химические свойства:Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.Строение:Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции).Рибонуклеи́новые кисло́ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК), принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
9. Клеточный цикл, его периодизация. Митотический цикл и его механизмы. Проблемы клеточной пролиферации в медицине. Онкогенез, теории онкогенеза.
Клеточный цикл — это периоды существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.Длительность клеточного цикла эукариот.Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.Фазы клеточного цикла эукариот:





Дата публикования: 2015-02-03; Прочитано: 1461 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...