Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Осложнение химиотерапии со стороны микроорганизмов прояв­ляется развитием лекарственной устойчивости



В настоящее время лекарственная устойчивость микроорга­низмов — возбудителей различных заболеваний — не только чисто микробиологическая, но и огромная государственная проблема (например, смертность детей от стафилококкового сепсиса находится в настоящее время примерно на том же вы­соком уровне, что и до появления антибиотиков). Это связано с тем, что среди стафилококков — возбудителей различных гнойно-воспалительных заболеваний — довольно часто выде­ляются штаммы, одновременно устойчивые ко многим препара­там (5—10 и более).

Среди микроорганизмов — возбудителей острых кишечных инфекций до 80% выделяемых возбудителей дизентерии устой­чивы ко многим используемым антибиотикам.

В основе развития лекарственной устойчивости к антибиоти­кам и другим химиотерапевтическим препаратам лежат мутации хромосомных генов или приобретение плазмид лекарственной устойчивости.

Существуют роды и семейства микроорганизмов, природно-устойчивыё к отдельным антибиотикам; в их геноме есть гены, контролирующие этот признак. Для рода ацинетобактер, на­пример, устойчивость к пенициллину является таксономиче­ским признаком. Полирезистентны к антибиотикам и многие представители псевдомонад, неклостридиальных анаэробов и другие микроорганизмы.

Такие бактерии являются природными банками (хранилища­ми) генов лекарственной устойчивости.

Как известно, мутации, в том числе по признаку лекарствен­ной устойчивости, спонтанны и возникают всегда. В период массового применения антибиотиков в медицине, ветеринарии и растениеводстве микроорганизмы практически живут в сре­де, содержащей антибиотики, которые становятся селективным фактором, способствующим отбору устойчивых мутантов, по­лучающим определенные преимущества.

Плазмидная устойчивость приобретается микробными клетка­ми в результате процессов генетического обмена. Сравнитель­но высокая частота передачи R-плазмид обеспечивает широкое и достаточно быстрое распространение устойчивых бактерий в популяции, а селективное давление антибиотиков — отбор и закрепление их в биоценозах.

Плазмидная устойчивость может быть множественной, т. е. к нескольким лекарственным препаратам, и при этом достигать достаточно высокого уровня.

2. Биохимическую основу резистентности обеспечивают разные механизмы:

энзиматическая инактивация антибиотиков — осуществляется с помощью синтезируемых бактериями ферментов, разрушаю­щих активную часть антибиотиков. Одним из таких широко известных ферментов является бета-лактамаза, обеспечиваю­щая устойчивость микроорганизмов к бета-лактамным анти­биотикам за счет прямого расщепления бета-лактамного кольца этих препаратов. Другие ферменты способны не расщеплять, а модифицировать активную часть молекулы антибиотиков, как это имеет место при энзиматической инактивации аминогли-козидов и левомицетина;

изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки. Этот механизм лежит в основе устойчивости к тетрациклину,

изменение структуры компонентов микробной клетки, например изменение структуры бактериальных рибосом, сопровождается повышением устойчивости к аминогликозидам и макролидам, а изменение структуры РНК-синтетаз - к рифампицину.

У бактерий одного и того же вида могут реализовываться не­сколько механизмов резистентности.

В то же время развитие того или другого типа резистентности определяется не только свойствами бактерий, но и химической структурой антибиотика.

Так, цефалоспорины 1-го поколения устойчивы к действию стафило­кокковых бета-лактамаз, но разрушаются бета-лактамазами грамот-(рицательных микроорганизмов, тогда как цефалоспорины 4-го поко­ления и имипинемы высокоустойчивы к действию бета-лактамаз и 1грамположительных, и грамотрицательных микроорганизмов.

3. Для борьбы с лекарственной устойчивостью, т. е. для преодоле­ния резистентности микроорганизмов к химиопрепаратам, cy ществует несколько путей:

• в первую очередь — соблюдение принципов рациональной химио­терапии;

создание новых химиотерапевтических средств, отличающихся механизмом антимикробного действия (например созданная в последнее время группа химиопрепаратов — фторхинолоны) и мишенями;

постоянная ротация (замена) используемых в данном лечебном учреждении или на определенной территории химиопрепара­тов (антибиотиков);

комбинированное применение бета-лактамных антибиотиков со­вместно с ингибиторами бета-лактамаз (клавулановая кислота, сульбактам, тазобактам).

40. Для определения чувствительности бак­терий к антибиотикам (антибиотикограммы) обычно применяют:

• Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. Обычно препараты вносят или в специальные лунки в агаре, или на поверхности посева раскла­дывают диски с антибиотиками («метод дис­ков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков). Метод дисков — качес­твенный и позволяет оценить, чувствителен или устойчив микроб к препарату.

Методы определения минимальных ингибирующих и бактерицидных концентраций, т. е. минимального уровня антибиотика, кото­рый позволяет in vitro предотвратить видимый рост микробов в питательной среде или пол­ностью ее стерилизует. Это количественные методы, которые позволяют рассчитать дозу препарата, так как концентрация антибиоти­ка в крови должна быть значительно выше ми­нимальной ингибирующей концентрации для возбудителя инфекции. Введение адекватных доз препарата необходимо для эффективного лечения и профилактики формирования ус­тойчивых микробов.

Есть ускоренные способы, с применением автоматических анализаторов.

Определение чувствительности бактерий к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.

Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. Среду готовят из сухого порошка в соответствии с ин­струкцией.

На засеянную поверхность пинцетом помещают на одинако­вом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чув­ствительности к антибиотикам.

Для получения достоверных результатов необходимо приме­нять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувстви­тельность микроорганизмов методом серийных разведений.

Определение чувствительности бактерий к антибиотикам методом серийных разведений. Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в буль­оне (в объеме 1 мл), после чего к каждому разведению добав­ляют 0,1 мл исследуемой бактериальной суспензии, содержащей 106—107 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питатель­ной среды, сравнивая с контролем культуры. Последняя про­бирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий под влиянием содержа­щейся в ней минимальной ингибирующей концентрации (МИК) антибиотика.

Оценку результатов определения чувствительности микро­организмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штам­мов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов.

К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаружи­ваемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, созда­ющиеся в сыворотке крови при введении максимальных доз препарата. Устойчивыми являются микроорганизмы, рост кото­рых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

Определение антибиотика в крови, моче и других жидкостях организма человека. В штатив устанавливают два ряда проби­рок. В одном из них готовят разведения эталонного антибиотика, в другом — исследуемой жидкости. Затем в каждую пробирку вносят взвесь тест-бактерий, приготовленную в среде Гисса с глюкозой. При определении в исследуемой жидкости пеницил­лина, тетрациклинов, эритромицина в качестве тест-бактерий используют стандартный штамм S. aureus, а при определении стрептомицина — Е. coli. После инкубирования посевов при 37 °С в течение 18—20 ч отмечают результаты опыта по помутнению среды и ее окрашиванию индикатором вследствие расщепления глюкозы тест-бактериями. Концентрация антибиотика опреде­ляется умножением наибольшего разведения исследуемой жид­кости, задерживающей рост тест-бактерий, на минимальную концентрацию эталонного антибиотика, задерживающего рост тех же тест-бактерий. Например, если максимальное разведение исследуемой жидкости, задерживающее рост тест-бактерий, рав­но 1:1024, а минимальная концентрация эталонного антибио­тика, задерживающего рост тех же тест-бактерий, 0,313 мкг/мл, то произведение 1024- 0,313=320 мкг/мл составляет концен­трацию антибиотика в 1 мл.

Определение способности S. aureus продуцировать бета-лактамазу. В колбу с 0,5 мл суточной бульонной культуры стандарт­ного штамма стафилококка, чувствительного к пенициллину, вносят 20 мл расплавленного и охлажденного до 45 °С питатель­ного агара, перемешивают и выливают в чашку Петри. После застывания агара в центр чашки на поверхность среды поме­щают диск, содержащий пенициллин. По радиусам диска петлей засевают исследуемые культуры. Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта. О способности исследуемых бактерий продуцировать бета-лакта-мазу судят по наличию роста стандартного штамма стафило­кокка вокруг той или другой исследуемой культуры (вокруг диска).

41. Иммунология – наука о закономерностях иммунологической реактивности организма, о способах и методах использования иммунологических явлений в диагностике, лечении и профилактике инфекционных и неинфекционных болезней.

Задачи иммунологии:

А) Изучение строения, функций и развития иммунной системы в норме и при патологии.

Б) Изучение роли и значения иммунной системы в возникновении, развитии и течении инфекционных и неинфекционных заболеваний.

В) Разработка методов и средств иммунодиагностики, иммунотерапии и иммунопрофилактики инфекционных и неинфекционных заболеваний.

Г) Подготовка и переподготовка врачей-иммунологов.

Методы иммунологии.

• Иммуноморфологический.

• Иммунохимический.

• Иммунобиологические:

а) серологические

б) аллергологические

• Экспериментальный

Иммунология (иммун[итет] + греч. logos учение) — медико-биологическая наука о защитных свойствах организма, его иммунитете. Изучает молекулярные, клеточные и физиологические реакции организма на антигены микроорганизмов и продукты животного или растительного происхождения, обладающие антигенными свойствами.

• Важнейшими разделами И. являются иммуногенетика (изучает генетическую обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетические и популяционные аспекты взаимоотношений макро- и микроорганизма и тканевую несовместимость), иммунохимия (изучает химические основы иммунитета), иммунопатология. Выделяют также иммунобиологию (теоретическое направление в И., изучающее общебиологические основы иммунитета, его происхождение и эволюцию), И. эмбриогенеза (раздел И. и эмбриологии, исследующий процессы становления анти генной структуры тканей и органов в ходе эмбрионального развития и иммунологические взаимоотношения организма матери и плода), радиационную И. (изучает изменения иммунитета под влиянием ионизирующих излучений), сравнительную И. (исследует иммунный ответ у разных видов животных) и др.

• В клинической И. (иммунопатологии) также выделяют ряд разделов и направлений — инфекционную И., неинфекционную И., иммунофармакологию и др. Иммунология связана с биологией (микробиологией, молекулярной биологией, генетикой, эмбриологией), эндокринологией, патофизиологией, инфекционными болезнями, онкологией, гематологией (иммуногематология), эпидемиологией и другими дисциплинами.

• Основные проблемы и направления исследований в И. — аллергия, аутоиммунные болезни, И. злокачественных опухолей, трансплантационный иммунитет и иммунологическая толерантность (иммунные реакции реципиента на трансплантат), врожденные и приобретенные формы иммунологической недостаточности, СПИД и др. Клиническая иммунология разрабатывает методы иммунопрофилактики (см. Иммунизация), иммунодиагностики, иммунотерапии.

• Иммунологические методы, благодаря их уникальной специфичности и высокой чувствительности, широко применяются в биологии и медицине, в т.ч. при идентификации вирусов и бактерий, при установлении природы аллергенов, при переливании крови, трансплантации органов. В судебной медицине иммунологические методы используют для исследования вещественных доказательств, решения вопросов о спорном отцовстве, материнстве, в антропологии для решения проблем эволюции человеческих рас, их связей и происхождения.

42. Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это спе­циализированная, анатомически обособленная ткань, разбросан­ная по всему организму в виде различных лимфоидных образо­ваний. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (группо­вые лимфатические фолликулы, или пейеровы бляшки, минда­лины, подмышечные, паховые и другие лимфатические образо­вания, разбросанные по всему организму), а также циркулиру­ющие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфо­цитов, находящихся между этими клетками. Основными функ­циональными клетками иммунной системы являются лимфоци­ты, подразделяющиеся на Т- и В-лимфоциты и их субпопуля­ции. Общее число лимфоцитов в человеческом организме дос­тигает 1012, а общая масса лимфоидной ткани составляет при­мерно 1—2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные).

Функции иммунной системы. Иммунная система выполняет функцию специфической зашиты от анти­генов, представ­ляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реак­ций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или об­разовавшийся в самом организме.

Специфическая функция иммунной системы в обезвреживании антигенов дополняется ком­плексом механизмов и реакций неспецифичес­кого характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам.





Дата публикования: 2015-02-03; Прочитано: 523 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...