Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мировоззренческая роль науки в новоевропейской культуре



Эпистемологические и мировоззренческие итоги научной революции.

1. Натурализм. Укреплению идеи самодостаточности природы, управляемой естественными, объективными законами, лишенной примесей антропоморфизма и те­леологического символизма, а также концептуализируе­мойна основе типологии «причина-следствие», а не «причина-значение», способствовали два обстоятельства. Первое — разработка таких нетрадиционных тео­логических концепций, как пантеизм (Спиноза) и де­изм (Ньютон, Вольтер, Шаррон). Растворение бога в природе, представлявшее в то время, несомненно, форму атеизма, приводило, с одной стороны, к тому, что пантеистическому богу было трудно молиться, а с другой стороны — к своеобразной эмансипации при­роды, которая по своему статусу не только становилась «однопорядковой» богу, но и — в условиях концентра­ции познавательных интересов на вопросах естество­знания -— приобретала явное превосходство над ним. Деизм же уже фактически утверждал возможность естественных объективных законов, ибо дифференци­ровал творение как супранатуральный акт и натураль­ные принципы существования сотворенного. Изучение первого (причины мира) составляло вотчину метафи­зики, а изучение второго (автономно существующего мира как следствия) — физики, причем между одним и другим не находилось общих точек соприкосновения («физика — бойся метафизики!»).

Второе — развитие медицины, физиологии, анатомии и т. п., которое укрепляло идею «тварности» человека, его единства с органической и неорганической приро­дой («человек — вещь во множестве вещей») и которое разрушало антропоцентристские телеологические ил­люзии о некоей привилегированности человека в мире.

2. Комбинаторность. Это мировоззренческий подход к вопросам структуры действительности, противопо­ложный доминировавшему ранее символически-иерар­хическому подходу. Согласно ему, всякий элемент мира представлялся не в виде некоего качественного цело­го, органически связанного с другими подобными целостностями во всеохватывающую и всепроникающую тотальность, а в виде набора форм разной степени существенности и общности. Суть этого подхода пере­дают следующие слова Галилея: «... никогда я не стану от внешних тел требовать что-либо иное, чем величи­на, фигуры, количество... движения... я думаю, что если бы мы устранили уши, языки, носы, то остались бы только фигуры, число и движение». Подобную пози­цию разделяли (спор о первичных и вторичных каче­ствах) Локк, Гоббс, Декарт, Спиноза и др. На этой ос­нове устанавливалось своеобразное единство мира, понимаемое как общность его форм, что разрушало качественный взгляд на мир как на неограниченное много- и разнообразие. Разнообразие действительнос­ти отныне описывалось в терминах механической ком­бинаторики нескольких фундаментальных форм, ответ­ственных за известные качества. Отсюда, знать дей­ствительность означало знать правила сочетаний форм. Последнее определяло такие специфические черты новой идеологии, как инструментальность и механис­тичность, сыгравших видную роль в процессе оформ­ления естествознания как науки.

3. Квантитативизм. На основе комбинаторности развился квантитативизм — универсальный метод ко­личественного сопоставления и оценки образующих всякий предмет форм: «познать — значит измерить». Значительный импульс прогрессу методов подведения форм под количественное описание придала разработ­ка Декартом и его последователями (де Бон, Шутен, Слюз, де Витт, Валлис и др.) аппарата аналитической геометрии, где обосновывалась идея единства геомет­рических форм и фигур, объединенных формальными преобразованиями. В связи с этим «пространственные формы... которые в своей индивидуальности даже бо­готворились греками, рассматривавшими их как некоторые индивидуальные сущности… были развенчаны и сведены к ряду некоторых простейших и всеобщих соотношений»; это и позволяло «единообразно рассмот­реть все царство индивидуальностей». Существенным представляется то, что качества, которые ранее не могли быть соизмерены на единой основе (Аристотель в силу «качественного» стиля мышления не мог создать теорию стоимости, хотя вплотную подошел к этому), теперь оказались соиз­меримыми, что учреждало картину унитарного — го­могенно-количественного, а не иерархизированного — гетерогенно-качественного космоса.

4. Причинно-следственный автоматизм. Существен­ный вклад в оформление образа естественной причин­но-следственной связности явлений действительности внесли Гоббс, который элиминировал из введенных Аристотелем материальных, действующих, формаль­ных и целевых причин две последние, а также Спино­за, который показал, что, «если бы люди ясно познали весь порядок природы... они нашли бы все так же не­обходимым, как все то, чему учит математика». Эта мировоззренческая позиция, нашедшая активную под­держку во внутринаучном сознании (Галилей, Бойль, Ньютон, Гюйгенс и др.), лишала действительность сим­волически-телеологических тонов и открывала путь для объектив но-необходимого закономерного ее описания. Кроме того, следует отметить такой момент, как все­мерно упрочившийся в то время монотеистический характер верования, которого не было в античности и который в гораздо большей степени, чем античные идеи долженствования и приказа, способствовал утвержде­нию понятия о единообразно и закономерно детерми­нируемой действительности.

5. Аналитизм. У греков «именно потому, что они еще не дошли до расчленения, до анализа природы, — при­рода еще рассматривается в общем, как одно целое. Всеобщая связь явлений природы не доказывается в подробностях: она является для греков результатом непосредственного созерцания». В условиях же Но­вого времени утверждается совершенно отличный от античного стиль познания, в соответствии с которым познавательная деятельность функционировала не как абстрактно-синтетическая спекуляция, а как конкрет­но-аналитическая реконструкция плана, порядка и конституции вещей, как умение разлагать их на фун­даментальные составляющие. Примат аналитической деятельности над синтетической в мышлении предста­вителей данного периода способствовал формирова­нию системы физической причинности, которая окон­чательно сложилась и упрочилась с появлением меха­ники Ньютона. До Ньютона подобной системы не существовало. Даже законы Кеплера «не удовлетворя­ли требованию причинного объяснения», ибо «пред­ставляли собой три логически независимых друг от друга правила, лишенных всякой внутренней связи» и относились «к движению в целом», не позволяя «выве­сти из состояния движения в некоторый момент вре­мени другое состояние, во времени непосредственно следующее за первым». Другими словами, законы Кеплера были интег­ральными и по своему гносеологическому статусу мало чем отличались от абстрактно-созерцательных форму­лировок мыслителей Античности. Дифференциальные же законы, а вместе с ними и та единственная форма «причинного объяснения, которая может полностью удовлетворять... физика», были впервые созданы в рамках аналитической механики Ньютона.

6. Геометризм. Эта черта мышления, противопостав­ляемая нами античному физикализму и медиевистскому иерархизму, оформляется как следствие утвержде­ния гелиоцентризма. Для разъяснения мысли остано­вимся на истории мировоззренческой ассимиляции последнего культурой того времени. Сам Коперник отчетливо сознавал, что влияние его теории не ограни­чивается физикой: «... она приведет к переоценке цен­ностей и взаимоотношений различных категорий; она изменит взгляды на цели творения. Тем самым она произведет переворот также и в метафизике и вообще во всех областях, соприкасающихся с умозрительной стороной знания. Отсюда следует, что люди, если су­меют или захотят рассуждать здраво, окажутся совсем в другом положении, чем они были до сих пор или воображали, что были». Гелиоцентрическое учение действительно имело огромнейшее идеологическое значение, поскольку за поднятым Коперником чисто физическим вопросом — просто научной задачей скрывалось нечто чрезвычай­но важное — уяснение положения человека во Вселен­ной. Революционной в связи с этим оказывалась преж­де всего онтологическая сторона гелиоцентризма. Если антично-средневековая онтология базировалась на учении Аристотеля об анизотропном и неоднородном пространстве, что позволяло формулировать представ­ление о пяти стихиях и, в частности, об эфире как «квинтэссенции бытия», противопоставляемой услови­ям земного бытия, а на этой основе оформлять анти­номии небесного-мирского и т. д., то Коперник осно­вывал свои построения на учении об однородном и изотропном (евклидовом) пространстве, все точки и на­правления движения в котором равноценны. Посколь­ку физическое действие в пространстве Коперник связывал не с диалектикой стихий, а с точками сосре­доточения материального субстрата вне зависимости от их местоположения, постольку каких-либо каче­ственных онтологических различий между Небом и Землей для него не существовало. Последнее означало образование картины унитарного космоса, развитие которой, затрагивая и вопросы гносеологии, позволяло обосновать доктрину универсальных законов природы. Разработке данных идейкоперниканства посвятили себя многие передовые мыслители Ренессанса, но особенно значительным был вклад, внесенный Г. Гали­леем и Д. Бруно. Галилей открыл бесконечное множе­ство неподвижных звезд, которых человек никогда не видел и не предполагал, что наносило смертельный удар по телеологическому учению перипатетиков, при­способленному к католицизму, ибо все эти небесные тела «не могли быть созданы для того, чтобы ночью светить людям» Заслуга же Бруно заключалась в том, что активно проводимая им критика телеологического антропоцентризма привела к созданию учения о бес­конечной Вселенной, опровергавшего фидеистическую антиномию небесного — земного.

Таким образом, геометризация мира на основе ев­клидовой теории также стимулировала утверждение картины безграничного однородного, управляемого еди­ными законами космического универсума. Поскольку вследствиеевклидизации мира устанавливалась карти­на онтологически гомогенной действительности (чему способствовал также факт открытия Галилеем пятен на Солнце), постольку, как писал Спиноза, «законы и правила природы, по которым все происходит и изме­няется... везде всегда одни и те же, а следовательно, и способ познания природы вещей... должен быть один и тот же, а именно — это должно быть познанием из универсальных законов и правил природы».

7. Финализм — интенция на гомогенную, неопровер­жимую, самозамкнутую, абсолютно истинностную си­стему знания.

8. Имперсональность — субъективная отрешенность знания как следствие погружения последнего в область безличного объективно сущего, чуждого индуцируемых познающим субъектом аксиологических измерений.

9. Абсолютизм — субъект как асоциальный, аисторичный, среднетипический познаватель, отрешенное воплощение интеллектуальных способностей обладает талантом непосредственного умосозерцания истин, данных как извечные, неизменные, непроблематизиру-емые регистрации беспристрастного обстояния дел.

10. Наивный реализм — онтологизация познаватель­ной рефлексии: постулирование зеркально-непос­редственно-очевидного соответствия знания действи­тельности, восприятие содержания мыслительных отображений реальности как атрибутивного самой реальности.

11. Монотеоретизм — установка на жестко детерминисти­ческое (аподиктически-однозначное) толкование собы­тий, исключение случайности, неопределенности, мно­гозначности — показателей неполноты знания — как из самого мира, так и из аппарата его описания; ставка на нетерпимый к дополнительности, альтернативнос­ти, вариабельности, эквивалентности агрессивно-воин­ствующий монотеоретизм, навевающий тенденциоз­ную авторитарно-консервативную идеологию всеведе­ния (исчерпывающе полное, вполне адекватное знание не как императив, а как реальность).

12. Механицизм — гипертрофия механики как спосо­ба миропонимания. С античного атомизма до вульгар­ного физиологического материализма XIX в. господ­ствует редукционистская идеологема о мире-машине и человеке-автомате, которые ввиду этого доступны познанию.

13. Кумулятивизм. — трактовка развития знания как линейного количественного его саморасширения за счет монотонной аддитации новых истин. Симптома­тично в этом отношении такое убеждение Гегеля: боль­шая и даже, может быть большая часть содержания наук носит характер прочных истин, сохраняясь неиз­менной; возникающее же новое не представляет собой изменения приобретенного ранее, а прирост и умно­жение его. Отсюда энтелехия познания — достиже­ние все большего уровня систематичности и точности: будущие открытия в детализации наличного знания.

14. Сущностные черты классической науки.

Классическая наука (XVI-сер.XIX вв.), исследуя свои объекты, стремилась при их описании и теоретическом объяснении устранить по возможности все, что относится к субъекту, средствам, приемам и операциям его деятельности. Такое устранение рассматривалось как необходимое условие получения объективно-истинных знаний о мире. Здесь господствует объектный стиль мышления, стремление познать предмет сам по себе, безотносительно к условиям его изучения субъектом.
Классическая стадия имеет своей парадигмой механику, ее картина мира строится на принципе жесткого детерминизма.

Основные открытия:

1. Гелиоцентрическое учение, Николай Коперник;
2. Формулировка законов классической механики и закона всемирного тяготения, абсолютного пространства и времени, Исаак Ньютон;
3. Химия, переодическая система элементов Менделеева;
4. Создание карпускулярно-волновой теории, Фарадей, Максвелл;
5. Клеточная теория, Шлейден, Шванн;
6. Закон сохранения и превращения энергии, Джоуль;
7. Теории эволюции живой природы, Ж. Б. Ламарк, Ч. Дарвин.
Последние четыре открытия не укладывались в классическую механистическую концепцию и послужили основными причинами ее пересмотра.

Основные принципы:

1. Прицип господства натурализма (признания объективного существования природы, которая управляется естесственными законами);
2. Редукционизм (высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам);
3. Принцип единства законов земного и небесного миров;
4. Мир качественно однороден, есть только количественные различия;
5. Наличие жестких причинно-сдедственных связей;
6. Зная координаты тела во Вселенной, а также силы, действующие на него, можно абсолютно точно предсказать положение в следующий и предыдущий момент времени, т.е. принцип ретросказуемости и предсказуемости. Если точный ответ невозможен – результат нашего незнания;
7. Объект исследования – материальные предметы;
8. Уверенность существования конечного предела делимости материи;
9. Господствует механизм, классическая механика – основная парадигма;
10. Процесс познания рассматривается как зеркальное отражение природы;
11. Мир принципиально познаваем, можно найти абсолютную истину;
12. Описание объекта без примесей субъективности;
13. Методология: квантитаризм (учет количественных параметров), эксперимент, математическая модель объекта, дедуктивный метод.

Отредактировано Heinz Till (2009-05-01 00:19:00)

Понятие классической науки охватывает период с XVII в. по 20-е годы ХХ в. Этот этап науки характеризуется рядом специфических особенностей:

1. Стремление к завершенной системе знаний, фиксирующей истину в окончательном виде.

2. Механистичность - представление мира в качестве машины, состоящей из элементов разной степени сложности. Даже живой организм понимался как механизм общемировой машины, функционирующей по законам механики.

3. Натурализм - признание идеи самодостаточности природы, управляемой естественными, объективными законами.

4. Метафизичность - рассмотрение природы как неизменного, неразвивающегося целого.

5. Доминирование количественного сопоставления и оценки всех явлений над качественным.

6. Причинно-следственный автоматизм - объяснение всех природных явлений естественными причинами.

7. Аналитизм - доминирование в научном мышлении аналитической деятельности над синтетической.

8. Геометризм - утверждение картины безграничного, однородного пространства, описываемого геометрией Евклида.

9. Субстанциональность - поиск первоосновы мира.

10. Гипотетический метод познания. Внедрение этого метода связано с именем Галилея, который предлагал вести изучение не с эмпирического, а с теоретического. Затем требовалось осуществление эксперимента, который должен был подтвердить или опровергнуть гипотезу.

В результате наука вытеснила религию в качестве интеллектуального авторитета, заняла ее место и стала претендовать на роль истины в последней инстанции, не оставив в мировоззрении место ни религии, ни философии.

В XIX веке наука остается в целом механистической и метафизической, но в ней начинают формироваться предпосылки второй глобальной революции. Этому предшествуют комплексные научные революции, в результате которых в естествознании утвердились идеи всеобщей связи и началось стихийное проникновение диалектических воззрений.

В этот период на первый план выдвигаются физика и химия, изучающие взаимопревращения веществ и энергии. В геологии возникает теория развития Земли Ч. Лайеля, в биологии зарождается эволюционная теория Ж.-Б. Ламарка.

Особое значение имели революции, связанные с тремя великими открытиями второй трети XIX в.:

· клеточной теории Шлейдена и Шванна;

· закона сохранения и превращения энергии Майера и Джоуля;

· эволюционного учения Дарвина.

Затем последовали открытия, продемонстрировавшие диалектику природы еще более полно:

· теория химического строения органических соединений А.М. Бутлерова;

· периодический закон Д. И. Менделеева;

· химическая термодинамика Я. Х. Вант-Гоффа;

· основы научной физиологии И. М. Сеченова;

· электромагнитная теория света Дж. Максвелла.

В результате этих научных открытий естествознание поднимается на качественно новую ступень и становится дисциплинарно организованной, систематизирующей наукой, т. е. наукой о предметах и процессах, их происхождении и развитии. В естествознании активно идет процесс дифференциации наук, т. е. дробление крупных разделов наук на более мелкие, например, выделение в физике таких разделов, как термодинамика, физика твердого тела, электричество, магнетизм и т. д.

К концу XIX в. появляются первые признаки процесса интеграции наук, который будет характерен для науки ХХ века. Это появление новых научных дисциплин на стыках наук, охватывающих междисциплинарные исследования, таких, как биохимия, геохимия, физическая химия и др.

В XIX - начале ХХ в. наука вступила в свой «золотой век». В ее важнейших областях произошли удивительные открытия, широко развернулась сеть научных институтов и академий, организованно проводящих различные исследования на основе соединения науки с техникой. Оптимизм этой эпохи был напрямую связан в верой в науку и ее способность преобразить жизнь человека.

Тем не менее естествознание оставалось в рамках классической науки, основанной на метафизике и механицизме. Это противоречие было разрешено в ходе второй глобальной научной революции.

Вторая (новейшая) революция в естествознании началась с 90-х годов XIX в. до середины ХХ века. Она началась в физике, затем проникла в другие естественные науки, изменив основания науки в целом и создав феномен современной науки.

Толчком новейшей революции в естествознании послужил ряд ошеломляющих открытий в физике:

· электромагнитных волн Г. Герцем;

· рентгеновских лучей В. Рентгеном;

· радиоактивности А. Беккерелем;

· электрона Дж. Томсоном;

· светового давления П. Н. Лебедевым;

· введения идеи кванта М. Планком;

· создание теории относительности А. Эйнштейном;

· разработка моделей атома Э. Резерфордом, а затем Н. Бором.

Это первый этап новейшей революции в естествознании, связанный с физикой. Он сопровождался крушением прежних представлений о материи, ее свойствах, формах движения, пространстве и времени.

Второй этап научной революции начался с середины 20-х годов ХХ в. Он связан с созданием квантовой механики в сочетании с теорией относительности. В ходе этого этапа были пересмотрены многие важнейшие постулаты науки:

· учение об атомах как твердых и неделимых частицах было заменено моделями, которые почти целиком заполнены пустотой;

· трехмерное пространство и одномерное время превратились в относительные проявления четырехмерного пространственно-временного континуума; время течет по-разному для тех, кто движется с разной скоростью; вблизи тяжелых предметов время замедляется, а при определенных условиях может совсем остановиться;

· законы Евклидовой геометрии не обязательны в масштабах Вселенной; планеты движутся по эллиптическим орбитам не потому, что их притягивает Солнце, а потому, что пространство, в котором они движутся, искривлено;

· объекты микромира имеют двойную природу и обнаруживают себя как частицы, и как волны;

· стало невозможным одновременно вычислить местоположение частицы и измерить ее ускорение (принцип неопределенности).

Началом третьего этапа научной революции были:

· овладение атомной энергией в 40-е годы нашего столетия;

· зарождение ЭВМ и кибернетики.

·наступление эпохи НТР, слияние науки с производством и превращение науки в производительную силу.

В этот период, наряду с физикой стали лидировать химия, биология и цикл наук о земле. С середины XX века наука окончательно сливается с техникой, приведя к современной научно-технической революции.

Вторая научная революция значительно изменила стиль научного мышления и привела к формированию современной науки.

Современная наука - это наука, связанная с квантово-релятивистской картиной мира. Ее основные особенности следующие:

1. квантово-релятивистский подход;

2. диалектичность;

3. изучение объектов и явлений на основе теории вероятности;

4. признание неисчерпаемости материи вглубь;

5. антиэлементаризм, т. е. отказ от стремления выделить элементарные составляющие сложных структур;

6. неточность и нестрогость результатов исследования и научных теорий;

7. отказ от изоляции предмета исследования от окружающих воздействий;

8. динамизм, обусловленный исследованиями неравновесных, нестационарных, открытых систем с обратной связью;

9. развитие наук биосферного класса;

10. апогей противостояния науки и религии.

В различные периоды истории наблюдалось различное сочетание и соподчинение науки с различными сферами человеческой деятельности. В античный период наука была частью философии и выступала в комплексе со всеми формами общественного сознания. В Средние века наука находилась под властью религии, которая значительно сдерживала ее развитие. В эпоху Возрождения наука начинает бурно развиваться, но сохраняет за философией место ведущего элемента в мировоззрении.

В XIX в. в связи с успехами естествознания, наука начала доминировать в культуре и мировоззрении. Тогда же между наукой и философией разгорелся конфликт, который продолжается до настоящего времени. Суть конфликта - борьба за право обладать истиной в последней инстанции. Такие инциденты уже были в истории, например инквизиция в Средние века.

В XIX в. наука, не осознавая своих границ, пыталась дать ответ на все вопросы бытия. Так возникла идеология сциентизма как веры в науку как единую непререкаемую истину.

Исторически идеология сциентизма прошла определенную эволюцию от идей просветительства через философию позитивизма к технократизму, порождающему психологию потребительства.

Современный сциентизм формирует следующие мировоззренческие установки:

· рациональный расчет;

· прагматизм (люди - средства достижения цели);

· доминирование материальных интересов над духовными;

· сомнение в истинности духовных ценностей.

Таким образом, возник парадокс научного мышления, состоящий в том, что разрушая наивно-целостное воззрение на мир, которое дает религия и философия, подвергая сомнению каждый их постулат, принимаемый на веру, наука не дает такого же целостного убедительного миропонимания.

Все конкретные истины науки охватывают достаточно узкий круг явлений, а научный скепсис породил вокруг себя мировоззренческий дефицит. Наука - это часть культуры, необходимая, но не самодостаточная ее часть.

Использование научных открытий для создания новых видов оружия, особенно атомного, заставило человечество пересмотреть свою прежнюю безоговорочную веру в науку.

Еще с середины ХХ века в адрес науки высказывались многочисленные критические оценки со стороны философов, деятелей культуры, искусства. По их мнению, техника умаляет и дегуманизирует человека, окружая его искусственными предметами, она нарушает его связь с живой природой, ввергая в унифицированный мир, где цель поглощает средства, где промышленное производство превратило человека в придаток машины, где решение всех проблем видится в дальнейших технических достижениях, а не в человеческом решении.

Непрекращающаяся гонка технического прогресса, требующая напряжения всех сил человека и все новых экономических ресурсов, выбивает человека из колеи, разрушая его природную связь с Землей. Это приводит к разрушению традиционных устоев и ценностей.

К этой гуманистической критике добавились и тревожные факты неблагоприятных последствий научных достижений: опасное загрязнение воды, воздуха, почвы, вредное воздействие на растения, животных, вымирание большого числа видов, значительные нарушения в экосистеме всей планеты.

Эти факты все отчетливее проявляются в современной науке и мировоззрении, говоря об их кризисе. Разрешить этот кризис сможет только глобальная мировоззренческая революция, частью которой будет и новая революция в науке.

Такая же кризисная ситуация сложилась и в других сферах человеческой культуры. В настоящее время идет поиск путей выхода из этого глобального кризиса, намечаются черты будущего постмодернистского мировоззрения и постнеклассической науки.

По мнению большинства ученых, будущая постнеклассическая наука будет обладать следующими чертами:

1. Признавать равноправие таких сфер человеческой деятельности, как религия, философия, искусство. Постмодернизм принципиально отвергает выделение какой-то одной сферы человеческой деятельности в качестве ведущей. Постнеклассическая наука должна быть гармонично вписана в систему человеческой культуры и мировоззрения.

2. Иметь тенденцию к гуманизации, т. е. включить в свой предмет человека, допуская элементы субъективности в объективно истинном знании.

3. Познание в постнеклассической науке должно иметь диалогический характер.

4. Должна основываться на идее глобального эволюционизма - всеединой, нелинейной, самоизменяющейся, самоорганизующейся системы, в недрах которой возникают и исчезают структуры от физических полей, до биосферы и более крупных систем.

5. Иметь комплексный характер на основе стирания граней и перегородок между традиционно обособленными естественными, общественными и техническими науками, интенсификации междисциплинарных исследований.

6. Должна опираться на новые достижения в сфере хранения и получения знаний.

7. Выступать как предпосылка производства и воспроизводства человека как субъекта исторического процесса, как личности и как индивидуальности.

15. Неклассическая наука и ее особенности.

Исходный пункт неклассической науки (конец XIX – первая половина XX в.) связан с разработкой релятивистской и квантовой теории. Он отбрасывает представления о реальности как чего-то не зависящего от средств ее познания, субъективного фактора. Наука описывает связи между знаниями объекта и характером средств и операций деятельности субъекта. Объяснение и формулирование этих связей рассматривается в качестве объективного и истинного описания и объяснения мира.

Важные открытия:

1. Эйнштейн, Общая теория относительности;
2. Фрейд, психоанализ, 19 в.;
3. Планк, Бройль, квантовая теория;
4. Резенфорд, планетарная модель атома;
5. Ренген, ренгеновские лучи.

Все эти открытия разрушили картину мира. Более того, они новые теории зачастую противоречили друг другу (квантовая теория, электромагнитная теория, модель атома С неклассической наукой связана парадигма относительности, дискретности, вероятности. Многие прежние представления о материи были отвергнуты. Но в 20 годы 20 века была создана квантовая механика и сформулирована теория относительности, в рамках которой этот кризис в физике был преодален.

Основные принципы:
1. Установка на невозможность описать мир сам по себе;
2. Установлено различие в организации и развитии 3-х уровней мира: макро, микро, мега;
3. Нет качественной однородности в мега, микро и макромирах;
4. Вероятностный детерменизм;
5. Признавалась роль случайностей. Случайность – равноценный фактор необходимости;
6. Объект исследования не вещи, а процессы;
7. Принципиально невозможно найти первокирпичик мира, т.е. материя принципиально неисчерпаема;
8. Основная парадигма – квантовая механика, теория относительности;
9. Работа с микрочастицами показала, что нельзя не учитывать внимания на них, средств познавательской деятельности (приборов);
10. Истина конкретна, относительна и существует во множестве теорий;
11. Описание объекта зависит от того, как поставлен вопрос к природе субъектом познания;
12. Методология: отсутствие универсального научного метода, плюрализм научных методов, интуиция, творческий конструктивизм.

Особенности неклассической науки:
1. Возрастание роли философии в развитии естествознания и других наук;
2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения;
3. Укрепление и расширение единства природы, повышение роли целостного и субстанциального подходов. Целостность природы имеет качественное своеобразие на каждом из структурных уровней развития материи. Субстанциальный подход – стремление найти первосубстанцию;
4. Формирование нового детерминизма, основанного на всеобщей причинности, а не только на механической причинности;
5. Противоречие рассматривается как существенная характеристика объектов материального мира (например, противоречие квантовой и волновой структуры элементарных частиц);
6. Определяющее значение статистических закономерностей по отношению к динамическим, точно определенным;
7. Вытеснение метафизики в науке диалектикой (изменение способа мышления);
8. Изменение представлений о механизме возникновения научной теории.

Особенности развития неклассической теории обусловлены динамикой оснований науки, которые определяют “стратегию научного поиска и во многом обеспечивают включение его результатов в культуру соответствующей исторической эпохи”. В гетерогенной структуре оснований науки В.С.Степин выделяет следующие блоки, имеющие значение для нашей работы: идеалы и нормы исследования, научную картину мира, философские основания, которые допускают вариации философских идей и категориальных смыслов, применяемых в исследовательской деятельности. Идеалы и нормы, характерные для неклассической науки, связаны “с отказом от прямолинейного онтологизма и пониманием относительной истинности теорий”. При этом “принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. В отличие от классических образцов обоснование теории в квантово–релятивистской физике предполагало экспликацию в изложении теории операциональной основы вводимой системы понятий”.

Таким образом, становление нового образа науки поставило перед методологами проблему критериев неклассичности и разработки логико–методологической концепции неклассической теории.

Выделяемые различными авторами признаки, отличающие неклассическую науку от классической, обобщены и приведены Н.Т.Абрамовой. Это зависимость картины мира от целенаправленной деятельности субъекта (М.Хайдеггер), динамическая неустойчивость (И.Пригожин, И.Стенгерс), замена математического эталона физическим (А.П.Огурцов), эволюционистская парадигма (Н.С.Юлина), смена описания объекта с необходимости на возможность (Ю.А.Шрейдер), самоорганизация как динамический принцип (Е.Янч).

Идея множественности описания одного и того же объекта в неклассической науке получает логико–методологическое обоснование при использовании такой же абстракции отождествления элементов, как и в случае классической науки. Однако эта познавательная процедура не должна накладывать ограничений на выбор признаков отождествления. Результаты взаимного приравнивания элементов будут изменяться вместе с изменениями выбранного признак. Реализация такого подхода приводит к принципу множественности описания (В.И.Беляев), полилога (Г.П.Щедровицкий, С.И.Котельников), неопределенности как антропоморфной познавательной модели (А.С.Кариньяни, В.С.Лозовский), нелинейности и многозначности логик (Н.Белкап, Т.Стил), индуктивного программирования (А.Г.Ивахтенко), многоаспектности познания (К.И.Бахтияров).

Существенной чертой неклассической науки выступает изменение идеальной модели реальности при изменении ее элементов или признаков. В неклассической науке также существует зависимость теоретических конструктов от признаков, приписываемых им принципами. На эту тонкость теоретического познания одним из первых обратил внимание А.Пуанкаре, который отметил, что понятие одновременности зависит от принципа постоянства скорости света. Если же принцип в своем становлении проходит стадию предположения, как в частности показал А.Эйнштейн на примере принципа эквивалентности инерционной и гравитационной масс, и при этом не может быть эмпирически проверен, то он принимается в виде некоторого соглашения, конвенции.

Неклассическое мышление связано с переходом к неаприорной логике, содержательной и зависящей от своего предмета.

Развитие неклассической науки ведет к повышению степени конкретности теории. Вместе с тем восхождение к конкретному в теоретическом знании реализуется в более сложной форме, чем это изображено в гегелевской схеме триады. Развитие неклассической теории показывает, что стадия синтеза противоположных теоретических систем включает в себя многообразные формы, в частности, такие, как “метафоризм”. Однако метафоризм теории — это еще не диалектический, а эклектический синтез старых принципов, выполняющий функцию перехода от конкретных теоретических парадоксов старой теории к новым принципам как исходному абстрактному уровню (идеальной модели) новой теории.

Подрыву классических представлений в естествознании способствовали некоторые идеи, которые зародились еще в середине XIX века, когда классическая наука находилась в зените славы. Среди этих первых неклассических идей, в первую очередь, следует отметить эволюционную теорию Ч. Дарвина. Как известно, в соответствии с этой теорией биологические процессы в природе протекают сложным, необратимым, зигзагообразным путем, который на индивидуальном уровне совершенно непредсказуем. Явно не вписывались в рамки классического детерминизма и первые попытки Дж. Максвелла и Л. Больцмана применить вероятностно-статистические методы к исследованию тепловых явлений. Г. Лоренц, А. Пуанкаре и Г. Минковский еще в конце XIX века начали развивать идеи релятивизма, подвергая критике устоявшиеся представления об абсолютном характере пространства и времени. Эти и другие революционные с точки зрения классической науки идеи привели в самом начале XX века к кризису естествознания, коренной переоценке ценностей, доставшихся от классического наследия.

Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века - М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, но по истине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Ньютона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Время - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Кроме того, он построил математическую теорию броуновского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921г. ему была присуждена Нобелевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792-1856).

Буквально в течение первой четверти века был полностью перестроен весь фундамент естествознания, который в целом остается достаточно прочным и в настоящее время.

Что же принципиально нового в понимании природы принесло с собой неклассическое естествознание?

1. Прежде всего, следует иметь в виду, что решающие шаги в становлении новых представлений были сделаны в области атомной и субатомной физики, где человек попал в совершенно новую познавательную ситуацию. Те понятия (положение в пространстве, скорость, сила, траектория движения и т.п.), которые с успехом работали при объяснении поведения макроскопических природных тел, оказались неадекватными и, следовательно, непригодными для отображения явлений микромира. И причина этого заключалась в том, что исследователь непосредственно имел дело не с микрообъектами самими по себе, как он к этому привык в рамках представлений классической науки, а лишь с "проекциями" микрообъектов на макроскопические "приборы". В связи с этим в теоретический аппарат естествознания были введены понятия, которые не являются наблюдаемыми в эксперименте величинами, а лишь позволяют определить вероятность того, что соответствующие наблюдаемые величины будут иметь те или иные значения в тех или иных ситуациях. Более того, эти ненаблюдаемые теоретические объекты (например, y - функция Шредингера в квантовой механике или кварки в современной теории адронов) становятся ядром естественнонаучных представлений, именно для них записываются базовые соотношения теории.

2. Второй особенностью неклассического естествознания является преобладание же упомянутого вероятностно-статистического подхода к природным явлениям и объектам, что фактически означает отказ от концепции детерминизма. Переход к статистическому описанию движения индивидуальных микрообъектов было, наверное, самым драматичным моментом в истории науки, ибо даже основоположники новой физики так и не смогли смириться с онтологической природой такого описания ("Бог не играет в кости", - говорил А. Эйнштейн), считая его лишь временным, промежуточным этапом естествознания.

3. Далеко за рамки естествознания вышла сформулированная Н. Бором и ставшая основой в неклассической физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координаты и импульсы, кинетическая и потенциальная энергия, напряженность электромагнитного поля и число фотонов и т.п. Таким образом, с точки зрения неклассического естествознания невозможно не только однозначное, но и всеобъемлющее предсказание поведения всех физических параметров, характеризующих динамику микрообъектов.

4. Для неклассического естествознания характерно объединение противоположных классических понятий и категорий. Например, в современной науке идеи непрерывности и дискретности уже не являются взаимоисключающими, а могут быть применены к одному и тому же объекту, в частности, к физическому полю или к микрочастице (корпускулярно-волновой дуализм). Другим примером может служить относительность одновременности: события, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета, движущейся относительно первой.

5. Произошла в неклассической науке и переоценка роли опыта и теоретического мышления в движении к новым результатам. Прежде всего, была зафиксирована и осознана парадоксальность новых решений с точки зрения "здравого смысла". В классической науке такого резкого расхождения науки со здравым смыслом не было. Основным средством движения к новому знанию стало не его построение снизу, отталкиваясь от фактической, эмпирической стороны дела, а сверху. Явное предпочтение методу математической гипотезы, усложнение математической символики все чаще стали выступать средствами создания новых теоретических конструкций, связь которых с опытом оказывается не прямой и не тривиальной.

Как реакция на кризис механистического естествознания и как оппозиция классическому рационализму в конце XIX в. возникает направление, представленное В. Дильтеем, Ф. Ницше, Г. Зиммелем, А. Бергсоном, О. Шпенглером и др., - "философия жизни". Здесь жизнь понимается как первичная реальность, целостный органический процесс, для познания которой неприемлемы методы научного познания, а возможны лишь внерациональные способы - интуиция, понимание, вживание, вчувствование и др.

Представители баденской школы неокантианства В. Виндельбанд (1848-1915) и Г. Риккерт (1863-1936) считали, что "науки о духе" и естественные науки, прежде всего, различаются по методу. Первые (идиографические науки) описывают неповторимые, индивидуальные события, процессы, ситуации; вторые (номотетические), абстрагируясь от несущественного, индивидуального, выявляют общее, регулярное, закономерное в изучаемых явлениях.

Испытавший на себе сильное влияние В. Виндельбанда и Г. Риккерта немецкий социолог, историк, экономист Макс Вебер (1864 - 1920) не разделяет резко естественные и социальные науки, а подчеркивает их единство и некоторые общие черты. Существенная среди них та, что они требуют "ясных понятий", знания законов и принципов мышления, крайне необходимых в любых науках. Социология вообще для него наука "номотетическая", строящая свою систему понятий на тех же основаниях, что и естественные науки - для установления общих законов социальной жизни, но с учетом ее своеобразия.

Предметом социального познания для Вебера является "культурно-значимая индивидуальная действительность". Социальные науки стремятся понять ее генетически, конкретно-исторически, не только какова она сегодня, но и почему она сложилась такой, а не иной. В этих науках выявляются закономерно повторяемые причинные связи, но с акцентом на индивидуальное, единичное, культурно-значимое. В них преобладает качественный аспект исследования над количественным, устанавливаются вероятностные законы, исходя из которых объясняются индивидуальные события. Цель социальных наук - познание жизненных явлений в их культурном значении. Система ценностей ученого имеет регулятивный характер, определяя выбор им предмета исследования, применяемых методов, способов образования понятий.

Вебер отдает предпочтение причинному объяснению по сравнению с законом. Для него знание законов не цель, а средство исследования, которое облегчает сведение культурных явлений к их конкретным причинам, поэтому законы применимы настолько, насколько они способствуют познанию индивидуальных связей. Особое значение для него имеет понимание как своеобразный способ постижения социальных явлений и процессов. Понимание отличается от объяснения в естественных науках, основным содержанием которого является подведение единичного под всеобщее. Но результат понимания не есть окончательный результат исследования, это лишь высокой степени вероятности гипотеза, которая для того, чтобы стать научным положением, должна быть верифицирована объективными научными методами.

В качестве своеобразного инструмента познания и как критерий зрелости науки Вебер рассматривает овладение идеальным типом. Идеальный тип - это рациональная теоретическая схема, которая не выводится из эмпирической реальности непосредственно, а мысленно конструируется, чтобы облегчить объяснение "необозримого многообразия" социальных явлений. Мыслитель разграничивает социологический и исторический идеальные типы. С помощью первых ученый "ищет общие правила событий", с помощью вторых - стремится к каузальному анализу индивидуальных, важных в культурном отношении действий, пытается найти генетические связи. Вебер выступает за строгую объективность в социальном познании, так как вносить личные мотивы в проводимое исследование противоречит сущности науки. В этой связи можно вскрыть противоречие: с одной стороны, по Веберу, ученый, политик не может не учитывать свои субъективные интересы и пристрастия, с другой стороны, их надо полностью отвергать для чистоты исследования.

Начиная с Вебера намечается тенденция на сближение естественных и гуманитарных наук, что является характерной чертой постнеклассического развития науки.

16. Постнеклассическая наука. Основные тенденции формирования науки буду­щего.

Существенный признак постнеклассической науки (вторая половина XX – начало XXI в.) – постоянная включенность субъективной деятельности в “тело знания”. Она учитывает соотнесенность характера получаемых знаний об объекте не только с особенностью средств и операцийдеятельности познающего субъекта, но и с ее ценностно-целевыми структурами.
Постнеклассической стадии соответствует парадигма становления и самоорганизации. Основные черты нового (постнеклассического) образа науки выражаются синергетикой, Важнейшими характеристиками бытия выступают системность и развитие.

Характеристики современной постнеклассической науки:
1. Широкое распространение идей и методов синергетики, изучающей общие принципы процессов самоорганизации, протекающих в различных системах (физических, биологических, технических, социальных);
2. Укрепление парадигмы целостности, всестороннего взгляда на мир. Человек воспринимается как часть, познающее целое;
3. Сближение естественных наук с гуманитарными и между собой;
4. Идея коэволюции, сопряженного изменения частей внутри единого целого;
5. Внедрение времени во все науки (“историзация”, “диалектизация” науки);
6. Усиление роли междисциплинарных, комплексных подходов в исследовании объекта;
7. Преодоление разрыва объекта и субъекта;
8. Антропный принцип – присутствие человека (наблюдателя) меняет картину наблюдения;
9. Еще более широкое применение философии во всех науках;
10. Методологический плюрализм (постижение действительности всеми способами).

Примеры постнеклассических наук: – биология, экология, синергетика, глобалистика, науки о человеке. Предметом этих наук служили сверхсложные системы, включающие человека в качестве сущностного элемента их функционирования и развития.
Карл Маркс достаточно точно предсказал смену научной ориентации на включение в нее человека: “Впоследствии естествознание включит в себя науку о человеке в такой же мере, в какой наука о человеке включит в себя естествознание: это будет одна наука”.

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон (защитный белок) и т.д. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов (совокупность генов, содержащихся в одинарном наборе хромосом), а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии - клонирование.

Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхожде ния от низших химических систем к высшим.

Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как электрослабая теория Салама-Вайнберга, квантовая хромодинамика, "теория Великого Объединения", суперсимметричные теории, а с другой - к так называемому "кризису" физики элементарных частиц. Так, американский физик М. Гутцвиллер в 1994 г. писал: "Несмотря на все обещания, физика элементарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатировали некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров... Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необходимая для этого математика слишком сложна даже для современных компьютеров... Но даже когда я пытаюсь читать некоторые современные научные статьи или слушаю доклады некоторых своих коллег, меня не оставляет следующий вопрос: имеют ли они контакт с реальностью? Разрешите мне в качестве примера привести антиферромагнетизм, который снова популярен после открытия сверхпроводящих медных окислов Сверхизощренные модели антиферромагнетизма были предложены и разработаны чрезвычайно тщательно людьми, которые ни разу не слышали, да и слышать не хотят, о гематите (красный железняк-минерал подкласса простых окислов), или о том, что, как каждый знает, называется ржавым гвоздем".

Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.

Прогресс в 80 - 90-х гг. XX в. развития вычислительной техники был вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств создаются нечеткие компьютеры, способные решать подобного рода задачи. А внесение человеческого фактора в создание баз данных привело к появлению высокоэффективных экспертных систем, которые составили основу систем искусственного интеллекта.

Поскольку объектом исследования все чаще становятся системы, экспериментирование с которыми невозможно, то важнейшим инструментом научно-исследовательской деятельности выступает математическое моделирование. Его суть в том, что исходный объект изучения заменяется его математической моделью, экспериментирование с которой возможно при помощи программ, разработанных для ЭВМ. В математическом моделировании видятся большие эвристические возможности, так как "математика, точнее математическое моделирование нелинейных систем, начинает нащупывать извне тот класс объектов, для которых существуют мостики между мертвой и живой природой, между самодостраиванием нелинейно эволюционирующих структур и высшими проявлениями творческой интуиции человека"

На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника. Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, используемых для передачи информации. И если в начале XX в. на ее основе было возможно создание электронных ламп, то с 50-х гг. развивается твердотельная электроника (прежде всего полупроводниковая), а с 60-х гг. - микроэлектроника на основе интегральных схем. Развитие последней идет в направлении уменьшения размеров, содержащихся в интегральной схеме элементов до миллиардной доли метра - нанометра (нм), с целью применения при создании космических аппаратов и компьютерной техники.

Еще раз повторим, что все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек - так называемые "человекоразмерные комплексы"; медико-биологические, экологические, биотехнологические объекты, системы "человек-машина", которые включают в себя информационные системы и системы искусственного интеллекта и т.д. С такими системами осложнено, а иногда и вообще невозможно экспериментирование. Изучение их немыслимо без определения границ возможного вмешательства человека в объект, что связано с решением ряда этических проблем.

Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний - стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин (биологии, геологии и т.д.) и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Часто универсальный, или глобальный, эволюционизм понимают как принцип, обеспечивающий экстраполяцию эволюционных идей на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса.

Системный подход внес новое содержание в концепцию эволюционизма, создав возможность рассмотрения систем как самоорганизующихся, носящих открытый характер. Как отмечал академик Никита Николаевич Моисеев, все происходящее в мире можно представить как отбор и существуют два типа механизмов, регулирующих его:

1) адаптационные, под действием которых система не приобретает принципиально новых свойств;

2) бифуркационные, связанные с радикальной перестройкой системы.

Моисеев предложил принцип экономии энтропии, дающий "преимущества" сложным системам перед простыми. Эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другой, более сложной. Идея принципа универсального эволюционизма основана на трех важнейших концептуальных направлениях в науке конца XX в.:

1) теории нестационарной Вселенной;

2) синергетике;

3) теории биологической эволюции и развитой на ее основе концепции биосферы и ноосферы.

Модель расширяющейся Вселенной, существенно изменила представления о мире, включив в научную картину мира идею космической эволюции. Теория расширяющейся Вселенной испытала трудности при попытке объяснить этапы космической эволюции от первовзрыва до мировой секунды после него. Ответы на эти вопросы даны в теории раздувающейся Вселенной, возникшей на стыке космологии и физики элементарных частиц.

В основу теории положена идея "инфляционной фазы" - стадии ускоренного расширения. После колоссального расширения в течение невероятно малого отрезка времени установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц. Несимметричность Вселенной выражается в преобладании вещества над антивеществом и обосновывается "великим объединением" теории элементарных частиц с моделью раздувающейся Вселенной. На этой основе удалось описать слабые, сильные и электромагнитные взаимодействия при высоких энергиях, а также достичь прогресса в теории сверхплотного вещества. Согласно последней, возникла возможность обнаружить факт, состоящий в том, что при изменении температуры в сверхплотном веществе происходит ряд фазовых переходов, во время которых меняются свойства вещества и свойства элементарных частиц, составляющих это вещество. Подобного рода фазовые переходы должны были происходить при охлаждении расширяющейся Вселенной вскоре после "Большого взрыва". Таким образом, устанавливается взаимосвязь между эволюцией Вселенной и процессом образования элементарных частиц, что дает возможность утверждать - Вселенная может представлять уникальную основу для проверки современных теорий элементарных частиц и их взаимодействий.

Следствием теории раздувающейся Вселенной является положение о существовании множества эволюционно развивающихся вселенных, среди которых, возможно, только наша оказалась способной породить такое многообразие форм организации материи. А возникновение жизни на Земле обосновывается на основе антропного принципа, устанавливающего связь существования человека (как наблюдателя) с физическими параметрами Вселенной и Солнечной системы, а также с универсальными константами взаимодействия и массами элементарных частиц. Данные космологии, полученные в последнее время, дают возможность предположить, что потенциальные возможности возникновения жизни и человеческого разума были заложены уже в начальных стадиях развития Метагалактики, когда формировались численные значения мировых констант, определившие характер дальнейших эволюционных изменений.

Вторым концептуальным положением, лежащим в основе принципа универсального эволюционизма, явилась теория самоорганизации – синергетика. Ее характеризуют, используя следующие ключевые слова: самоорганизация, стихийно-спонтанный структурогенез, нелинейность, открытые системы. Синергетика изучает открытые, т.е. обменивающиеся с внешним миром, веществом, энергией и информацией системы. В синергетической картине мира царит становление, обремененное многовариантностью и необратимостью. Бытие и становление объединяются в одно понятийное гнездо. Время создает или, иначе выражаясь, выполняет конструктивную функцию.

Нелинейность предполагает отказ от ориентаций на однозначность и унифицированность, признание методологии разветвляющегося поиска и вариативного знания.

Понятие синергетики получило широкое распространение в современных научных дискуссиях и исследованиях последних десятилетий в области философии науки и методологии. Сам термин имеет древнегреческое происхождение и означает содействие, соучастие или содействующий, помогающий. Следы его употребления можно найти еще в исихазме - мистическом течении Византии. Наиболее часто он употребляется в контексте научных исследований в значении: согласованное действие, непрерывное сотрудничество, совместное использование.

1973 г. - год выступления немецкого ученого Германа Хакена (род.1927) на первой конференции, посвященной проблемам самоорганизации, положил начало новой дисциплине и считается годом рождения синергетики. Хакен обратил внимание на то, что корпоративные явления наблюдаются в самых разнообразных системах, будь то астрофизические явления, фазовые переходы, гидродинамические неустойчивости, образование циклонов в атмосфере и т.д. В своей классической работе "Синергетика" он отмечал, что во многих дисциплинах, от астрофизики до социологии, мы часто наблюдаем, как кооперация отдельных частей системы приводит к макроскопическим структурам или функциям. Синергетика в ее нынешнем состоянии фокусирует внимание на таких ситуациях, в которых структуры или функции систем переживают драматические изменения на уровне макромасштабов. В частности, ее особо интересует вопрос о том, как именно подсистемы или части производят изменения, всецело обусловленные процессами самоорганизации. Парадоксальным казалось то, что при переходе от неупорядоченного состояния к состоянию порядка все эти системы ведут себя схожим образом.

Хакен объясняет, почему он назвал новую дисциплину синергетикой следующим образом. Во-первых, в ней "исследуется совместное действие многих подсистем... в результате которого на макроскопическом уровне возникает структура и соответствующее функционирование". Во-вторых, она кооперирует усилия различных научных дисциплин для нахождения общих принципов самоорганизации систем. Г. Хакен подчеркнул, что в связи с кризисом узкоспециализированных областей знания информацию необходимо сжать до небольшого числа законов, концепций или идей, а синергетику можно рассматривать как одну из подобных попыток. По мнению ученого, существуют одни и те же принципы самоорганизации различных по своей природе систем, от электронов до людей, а значит, речь должна вестись об общих детерминантах природных и социальных процессов, на нахождение которых и направлена синергетика.

Неоценим вклад в развитие этой науки Ильи Романовича Пригожина (1917-2003) – русско-бельгийского (из семьи русских эмигрантов) ученого, лауреата Нобелевской премии (отметим, что Пригожин как правило термин «синергетика» не использовал). Пригожин на основе своих открытий в области неравновесной термодинамики показал, что в неравновесных открытых системах возможны эффекты, приводящие не к возрастанию энтропии и стремлению термодинамических систем к состоянию равновесного хаоса, а к "самопроизвольному" возникновению упорядоченных структур, к рождению порядка из хаоса. Синергетика изучает когерентное, согласованное состояние процессов самоорганизации в сложных системах различной природы. Для того, чтобы было возможно применение синергетики, изучаемая система должна быть открытой и нелинейной (нелинейность выражается в том, что одни и те же изменения вызывают разные изменения – допустим если взять наше самчувствие, то изменение температуры от 18 до 23 градусов в аудитории, скажется не столь значительно как, допустим изменение от 30 градусов до 35). Система также должна состоять из множества элементов и подсистем (электронов, атомов, молекул, клеток, нейронов, органов, сложных организмов, социальных групп и т.д.), взаимодействие между которыми может быть подвержено лишь малым флуктуациям, незначительным случайным изменениям, и находиться в состоянии нестабильности, т.е. - в неравновесном состоянии.

Синергетика использует математические модели для описания нелинейных процессов самоорганизации. Синергетика устанавливает, какие процессы самоорганизации происходят в природе и обществе, какого типа нелинейные законы управляют этими процессами и при каких условиях, выясняет, на каких стадиях эволюции хаос может играть позитивную роль, а когда он нежелателен и деструктивен.

Однако применение синергетики в исследовании социальных процессов ограничено в некоторых отношениях:

1. Удовлетворительно поняты, с точки зрения синергетики, могут быть только массовые процессы. Поведение личности, мотивы ее деятельности, предпочтения едва ли могут быть объяснены с ее помощью, так как она имеет дело с макросоциальными процессами и общими тенденциями развития общества. Она дает картину макроскопических, социоэкономических событий, где суммированы личностные решения и акты выбора индивидов. Индивид же, как таковой, синергетикой не изучается.

2. Синергетика не учитывает роль сознательного фактора духовной сферы, так как не рассматривает возможность человека прямо и сознательно противодействовать макротенденциям самоорганизации, которые присущи социальным сообществам.





Дата публикования: 2015-02-03; Прочитано: 3026 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.035 с)...