Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Случайные меры



13.1. Напомним определение - конечной меры.

Определение. Мера называется s - конечной, если для любого замкнутого ограниченного множества существует последовательность множеств , где , такая, что: a) при , б) .

Определение. Мера называется случайной и обозначается , где , если:

а) при фиксированных w и A как функция t является случайным процессом, б) при фиксированных w и t s - конечная мера, в) для .

Пусть - измеримая функция такая, что определён интеграл Лебега обозначаемый .

Обозначим .

Определение. Случайная мера m называется опциональной (предсказуемой), если для любой неотрицательной - измеримой функции Х процесс является опциональным (предсказуемым).

13.2. Обозначим .

Определение. Меру назовем мерой Долиан, если .

Отсюда следует, что для всякой неотрицательной - измеримой функции X(w, t, x) определен интеграл по мере Долиан:

.

Определение. Мера Долиан называется конечной, если . Определение. Будем говорить, что опциональная случайная мера m принадлежит классу (пишем ), если .

Определение. Mepa Долиан называется - s-конечной, если существует последовательность множеств таких, что , где , и для .

Определение. Будем говорить, что опциональная случайная мера принадлежит классу (пишем ) если , где и .

Очевидно следующее утверждение.

Теорема 42. .

13.3. Определение. Будем говорить, что случайные меры и совпадают Р - п. н. (пишем ), если для любой неотрицательной - измеримой функции Х .

Из этого определения следует утверждение.

Предложение 43, Пусть и - опциональные случайные меры такие, что:

а) для любой - измеримой X; б) хотя бы одна из них принадлежит . Тогда .

13.4. Определение. Компенсатором опциональной случайной меры называется предсказуемая мера (т. е. ) такая, что для любой неотрицательной, - измеримой функции Х(, t, х) .

Теорема 44. У всякой опциональной случайной меры существует и притом единственный компенсатор , т. е. (с точностью до нулевой меры Р). (Доказательство следует из теоремы Дуба - Мейера).

13.5. Определение. Случайная мера называется целочисленной, если:

1) для всех и ;

2) для принимает значения в ;

3) для фиксированных - - конечная мера;

4) для фиксированных - опциональный процесс.

Следующая теорема вытекает из определения целочисленной случайной меры и теорем 13 и 23.

Теорема 45. Пусть - целочисленная случайная мера, тогда существует мно­жество D и опциональный случайный процесс со значениями в Е такие, что , где - мера Дирака сосредоточенная в точке . Если - последовательность моментов остановки, исчерпывающая тонкое множество D, то для любой неотрицательной - измеримой функции спра­ведливо равенство

Р - п. н.

Следствие 46. Пусть - опциональный процесс со значениями в Rd. То­гда формула определяет целочис-ленную случайнуюмеру на .

§14 Случайные меры и мультивариантные точечные процессы.

14.1. Пусть - m - вариантный точечный процесс, a

, - считающие процессы, где .

Пример. Пусть - случайный процесс определённый соотно­шением - пуассоновский случайный процесс с интенсивностью . Ясно, что процесс принимает два значения {-1, 1}, причём время пребывания в состоянии -1 или в состоянии 1 распределены экспонен-циально с параметром . Этот процесс имеет кусочно-постояные траектории и непрерывен справа, поэтому он опционален. Через обозначим число попаданий в состояние 1(-1) за время t процессом . Очевидно, что если для , то можно построить следующим образом:

,

.

Ясно также, что с помощью и можно описать процесс

,

так как . Легко показать, что для справедливо предста­вление

,

причем - ограниченные мартингалы (относительно меры Р) для .

Приведённый выше пример служит основой для дальнейших построений.

14.2. Перейдем теперь к построению целочисленной случайной меры k - вариантного точечного процесса и её компенсатора.

В предыдущих параграфах мы установили связь между скачко-образными и мультивариантными точечными процессами. Итак, пусть - скачкообразный опци­ональный случайный процесс со значениями в Е, причём . В соответствии с результатами параграфа 13 для процесса определена целочисленная случайная мера , где - последовательность марковских моментов, исчерпывающая скачки процесса , . Очевидно, что при фиксированных это опциональный неубывающий процесс, т. е. при t ³ s. Стало быть, является субмартингалом и по теореме Дуба-Мейера существует компенсатор , т. е. является мартингалом относительно потока и меры Р. Предположим дополнительно, что имеет неслучай­ную матрицу интенсивности перехода . Тогда в силу теоремы 35 допускает представление:

. (9)

Обозначим - число переходов процесс из состояния j в состояние i за время t. Ясно, что его можно представить в виде:

.

Найдём компенсатор - случайной меры . Сначала заметим, что

.

Отсюда, в силу (9), имеем:

. (16)

Заметим: 1) для Р - п. н.

;

2) так как - ограниченный предсказуемый процесс, то

стохастический инте­грал является мартингалом. Поэтому процесс является компенсатором - целочисленной случайной меры относительно меры P.





Дата публикования: 2015-01-23; Прочитано: 319 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...