Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Доказательство. Обозначим через сумму первых случайных величин



Обозначим через сумму первых случайных величин. Из линейности математического ожидания получим:

Пусть . Воспользуемся неравенством Чебышёва:

(24)

так как . Заметим, что дисперсия суммы превратилась в сумму дисперсий в силу попарной независимости слагаемых, из-за которой все ковариации в свойстве 14 обратились в нуль при . Сумма же дисперсий слагаемых равняется из-за их одинаковой распределённости.

Замечание 24. Мы не только доказали сходимость, но и получили оценку для вероятности среднему арифметическому любого числа попарно независимых и одинаково распределённых величин отличаться от более, чем на заданное :

(25)

Легко видеть, что попарную независимость слагаемых в ЗБЧ Чебышёва можно заменить их попарной некоррелированностью, ничего не меняя в доказательстве. ЗБЧ может выполняться и для последовательности зависимых и разнораспределённых слагаемых. Предлагаю читателям, проследив за равенствами и неравенствами (24), получить доказательство следующего утверждения, предлагающего достаточные условия выполнения ЗБЧ для последовательности произвольных случайных величин.

Теорема 34 (ЗБЧ Маркова). Последовательность случайных величин с конечными вторыми моментами удовлетворяет ЗБЧ при выполнении любого из следующих условий:

а)

если , т.е. если при ;

б)

если независимы и (т.е. если )

в)

если независимы, одинаково распределены и имеют конечную дисперсию (ЗБЧ Чебышёва).

Теорема Маркова утверждает, что ЗБЧ выполнен, если дисперсия суммы слагаемых растёт не слишком быстро с ростом .

Сильная зависимость слагаемых приводит обычно к невыполнению ЗБЧ. Если, например, и , то , и свойство (23) не выполнено (убедиться!). В этом случае ; для одинаково распределённых слагаемых дисперсия суммы быстрее расти не может.

Следующее утверждение мы докажем чуть позже. Сравните его условия с условиями ЗБЧ Чебышёва.

Теорема 35 (ЗБЧ Хинчина(1)). Для любой последовательности независимых (в совокупности) и одинаково распределённых случайных величин с конечным первым моментом имеет место сходимость:

Более того, в условиях теоремы 35 имеет место и сходимость п. н. последовательности к . Это утверждение называется усиленным законом больших чисел (УЗБЧ) Колмогорова, и его мы доказывать не будем.

Получим в качестве следствия из ЗБЧ Чебышёва закон больших чисел Я. Бернулли. В отличие от ЗБЧ Чебышёва, описывающего предельное поведение среднего арифметического случайных в еличин с произвольными распределениями, ЗБЧ Бернулли имеет дело лишь со схемой Бернулли.

Теорема 36 (ЗБЧ Бернулли). Пусть событие может произойти в любом из независимых испытаний с одной и той же вероятностью , и пусть — число осуществлений события в испытаниях. Тогда . При этом для любого

Доказательство. Заметим, что есть сумма независимых, одинаково распределённых случайных величин, имеющих распределение Бернулли с параметром (индикаторов того, что в соответствующем испытании произошло ): , где

и , . Осталось воспользоваться ЗБЧ в форме Чебышёва и неравенством (25).





Дата публикования: 2015-02-03; Прочитано: 212 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...