Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Твердые диэлектрики



В твердых диэлектриках возможны все виды поляризации.

Для нейтральных диэлектриков ε = n 2, что подтверждается ниже приведенными результатами для неполярных диэлектриков при температуре 20 ºС

Ионные кристаллы с плотной упаковкой частиц обладают электронной и ионной поляризацией. ε изменяется в широких диапазонах. С ростом температуры ε обычно растет. В неорганических аморфных диэлектриках (стеклах) ε изменяется в пределах от 4 до 20, возрастает с ростом температуры, хотя в ряде случаев (рутил TiO2, титанат кальцияCaTiO3) может и уменьшаться.

Органические полярные диэлектрики имеют дипольно – релаксационную поляризацию. ε изменяется в широких пределах, но обычно имеет значение 4 – 10. Диэлектрическая проницаемость зависит от температуры, частоты приложенного напряжения, подчиняясь, в целом, закономерностям, проявляющимся у полярных жидкостей.

19) Теорема Гаусса для электростатического поля в диэлектрике

Для описания электрического поля, в частности, в диэлектрике, вводят в рассмотрение вектор электрического смещения (вектор электростатической индукции) , равный

Результирующее поле в диэлектрике описывается вектором напряженности . зависит от свойств диэлектрика (от ε). Вектором описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать перераспределение свободных зарядов, создающих поле. Поэтому вектор характеризует электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Силовые линии вектора могут начинаться и заканчиваться как на свободных, так и на связанных зарядах. Силовые линии вектора - только на свободных. Через области поля, где находятся связанные заряды, силовые линии вектора проходят не прерываясь.

ПОТОК ВЕКТОРА через произвольную замкнутую поверхность

ТЕОРЕМА ГАУССА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ:

Поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов:

20) Индуцированные заряды

При внесении хезаряженного проводника в электрическое поле носители заряда приходят в движение. В результате у концов проводника возникают заряды противоположенного знака,называемые индуцированными зарядами.

Способ снятия потенциальной кривой коллек-
тора электрической машины постоянного тока, заключающийся в
премещении элемента, обеспечивающего снятие электрического па-
раметра, вдоль окружности коллектора работающей электрической
машины, отличающийся тем, что с целью расширения функциональ-
ных возможностей, повышения точности и надежности, перемещение
элемента, например датчика, использующего явление электроста-
тической индукции, осуществляют над колектором на постоянном
растоянии и измеряют на датчике величину заряда,наведенного
зарядами коллекторных пластин, и по величинам зарядов опреде-
ляют характер потенциальной кривой.

Это же явление используется для защиты различных обьектов
от вездействия электрических полей путем электрического экра-
нирования и для получения свервысоких постоянных напряжений
(генератор Ван-де Граафа).

21) Электростатическая индукция

Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур[1] у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.

22) Электростатическая защита

Электростатическая защита — помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля.

Это явление связано с тем, что на поверхности проводника (заряженного или незаряженного), помещённого во внешнее электрическое поле, заряды перераспределяются так (явление электростатической индукции), что создаваемое ими внутри проводника поле полностью компенсирует внешнее.

23) Электроемкость уединенного проводника

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д.

Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов).

Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.

Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу

C =

В СИ единицей электроемкости является фарад (Ф)

24) Конденсаторы

Энергия системы неподвижных точеч­ных зарядов. Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает

потенциальной энергией. Найдем потенци­альную энергию системы двух неподвиж­ных точечных зарядов Q 1 и Q 2, находя­щихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. (84.2) и (84.5)):

W1=Qlj1, W2=Q2j21,

где j12 и j21 — соответственно потенциа­лы, создаваемые зарядом Q 2. в точке на­хождения заряда q 1 и зарядом Q 1 в точке нахождения заряда Q 2. Согласно (84.5),

поэтому

W1=W2=W и

W=Q1j12=Q2j21=1/2(Q1j12+Q2j21).

Добавляя к системе из двух зарядов по­следовательно заряды Q 3, Q 4,..., можно убедиться в том, что в случае n непод­вижных зарядов энергия взаимодействия системы точечных зарядов равна

где ji — потенциал, создаваемый в той точке, где находится заряд Qi, всеми за­рядами, кроме i -го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на d Q. Для этого необходимо перенести заряд d Q из бесконечности на уединенный провод­ник, затратив на это работу, равную

dA=jdQ=Cjdj.

Чтобы зарядить тело от нулевого потенци­ала до j, необходимо совершить работу

. Энергия заряженного проводника рав­на той работе, которую необходимо совершить, чтобы зарядить этот проводник: W=Cj2/2=Qj/2=Q2/(2C). (95.3)

Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным j, из (95.1) найдем

3. Энергия заряженного конденсато­ра. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (95.3) равна

W = C (Dj)2/2=QDj/2=Q2/(2C), (95.4)

где Q — заряд конденсатора, С — его ем­кость, Dj — разность потенциалов между обкладками.

Используя выражение (95.4), можно найти механическую (пондеромоторную) силу, с которой пластины конден­сатора притягивают друг друга. Для этого предположим, что расстояние х меж­ду пластинами меняется, например, на величину Ах. Тогда действующая сила со­вершает работу

dA=Fdx

вследствие уменьшения потенциальной энергии системы

Fdx=-dW,

откуда

F=dW/dx. (95.5)

Подставив в (95.4) выражение (94.3), по­лучим

Производя дифференцирование при кон­кретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу:

где знак минус указывает, что сила F является силой притяжения.

25) Энергия электростатического поля

Энергия электростатического поля. Преобразуем формулу (95.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d) и разности потенци­алов между его обкладками (D j = Ed. Тогда

где V= Sd — объем конденсатора. Формула (95.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, — на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Выражение (95.8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение (88.2): Р = {e 0 Е.

Формулы (95.4) и (95.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.





Дата публикования: 2015-02-03; Прочитано: 450 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...