Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Первое начало термодинамики



Внутренняя энергия как функция состояния идеального газа. Способы измерения внутренней энергии. Работа газа при расширении, графическое представление работы. Первое начало термодинамики.?

18Теплоемкость.Теплоёмкость газа.Молярная и удельная теплоёмкость(определение и ед/измерения). Теплоемкость при постоянном объеме,температуре и давлении.Формула Майера.

Теплоёмкость -физ/вел,численно равная теплоте,которая сообщается всему телу для изменения его тем-ры на ΔТ. С(Дж/К)=dQ/dT→Q=∫cdT. Удельная тепл-ть-величина равная кол-ву теплоты,необходимой для нагревания 1кг в-ва на 1К: С(Дж/кг*К)=∂Q / mdT. Молярная тепл-ть-величина,равная кол-ву теплоты,необходимому для нагревания 1 моль в-ва на 1К: Сm(Дж/(моль*К)=∂Q/νdT,где ν=m/M-кол-во в-ва. Удельная связана с молярной: Сm=Cm,где М-молярная масса.1 начало термодинамики,для 1 моль газа: CmdT=dUm+pdVm. Если газ нагревается при постоянном объёме→то работа внеш/сил=о: Cv=dUm /dT т.е. молярная теплоемкость газа при постоянном объёме равна циклич/внутренней энергии 1моль газа при повышении его Т на1К: Cv=iR /2.При постоянном давлении: Cp=Cv+R- уравнение Майера. Оно показывает,что Ср всегда больше Сν на величину молярной газовой постоянной R.Это объясняется тем,чтопри нагревании при постоянном давлении требуется ещё доп/кол-во теплоты на совершение работы расширения газа,т.к. постоянство давления обеспечивается увеличением объёма газа: Cp=(i+2)R/2. Характеристическое соотношение газов: γ=Cp/Cv=(i+2)/i.

19Применение первого начала термодинамики к изопроцессам. Изотермический, изохорный,изобарический. Кол-во теплоты, работа и внутр/энергия при этих процессах. Графики процессов.

Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре. Для осуществления изотермического процесса, систему обычно помещают в термостат (массивное тело, находящееся в тепловом равновесии), теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса, и, температура системы в любой момент практически не отличается от температуры термостата. Можно осуществить изотермический процесс иначе — с применением источников или стоков тепла, контролируя постоянство температуры с помощью термометров. К изотермическим процессам относятся, например, кипение жидкости или плавление твёрдого тела при постоянном давлении. Графиком изотермического процесса является изотерма. В идеальном газе при изотермическом процессе произведение давления на объём постоянно (закон Бойля-Мариотта). Изотермы идеального газа в координатах — гиперболы, расположенные на графике тем выше, чем выше температура, при которой происходит процесс (см. рисунок). При изотермическом процессе системе, вообще говоря, сообщается определённое количество теплоты (или она отдаёт теплоту) и совершается внешняя работа. Альтернативный процесс, при котором теплообмен с окружающей средой отсутствует (термодинамическая система находится в энергетическом равновесии — система не поглощает и не выделяет тепло), называется адиабатическим процессом. Работа, совершенна я идеальным газом в изотермическом процессе, равна , где — число частиц газа, — температура, и — объём газа в начале и конце процесса, — постоянная Больцмана. В твёрдом теле и большинстве жидкостей изотермические процессы очень мало изменяют объём тела, если только не происходит фазовый переход. Первый закон термодинамики для изотермического процесса записывается в виде: в процессе изотермического расширения или сжатия внутренняя энергия идеального газа не изменяется, и полученное тепло полностью превращается в работу.

Изохорический или изохорный процесс (от др.-греч. ἴσος «равный» и χώρος «место») — термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма. При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется. -Используя первое начало термодинамики можно найти количество теплоты при изохорном процессе: Но при изохорном процессе газ не выполняет работу. То есть, имеет место равенство: , то есть вся теплота, которую получает газ идёт на изменение его внутренней энергии. Изменение внутренней энергии идеального газа можно найти по формуле:

Изобарный процесс (др.-греч. ἴσος «одинаковый» и βάρος «тяжесть») — термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа. Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе . Работа, совершаемая газом при расширении или сжатии газа, равна . Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии: Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии (Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Проще говоря, энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.): . Работа, совершаемая идеальным газом при изобарном процессе равна pdV, где р — давление, dV — изменение объема.

Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние. Единица измерения в Международной системе единиц (СИ): Джоуль.

20Адиабатический процесс. Определение. Уравнение Пуассона. Показатель адиабаты. Кол-во теплоты, работа и внутр/энергия при этом процессе.

Графическое представление процесса. Адиабати́ческий, или адиаба́тный проце́сс (от др.-греч. ἀδιάβατος — «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается тепловой энергией с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна[2]. Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётсяравновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только квазистатические адиабатические процессы[3]. Адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на термодинамической диаграмме, называется адиабатой. Адиабатическими можно считать процессы в целом ряде явлений природы. Так же такие процессы получили ряд применений в технике.

Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает (((электростатическое поле, стационарное поле температуры, поле давления, поле потенциала скорости в гидродинамике.)))) Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона. Это уравнение имеет вид:

где — оператор Лапласа или лапласиан, а — вещественная или комплексная функция на некотором многообразии.

В трёхмерной декартовой системе координат уравнение принимает форму: Показатель адиабаты (иногда называемый коэффициентом Пуассона) — отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения. Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква . Уравнение: , где — теплоёмкость газа, — удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы и обозначают условие постоянства давления или постоянства объёма, соответственно. Поясним понятие работы применительно к адиабатическому процессу. В частном случае, когда работа совершается через изменение объёма, можно определить её следующим способом: пусть газ заключён в цилиндрический сосуд, плотно закрытый легко скользящим поршнем, если газ будет расширяться, то он будет перемещать поршень и при перемещении на отрезок совершать работу. где F — сила, с которой газ действует на поршень. Перепишем уравнение: где s — площадь поршня. Тогда работа будет равна. где — давление газа, — малое приращение объёма. Аналогично видно, что уравнение выполняется и для сосудов с произвольной поперечной формой сечения. Данное уравнение справедливо и при расширении на произвольных объёмах. Для этого достаточно разбить поверхность расширения на элементарные участки на которых расширение одинаково. Основное уравнение термодинамики примет вид: .Это условие будет выполняться, если скорость хода поршня (протекания процесса в общем случае) будет удовлетворять определённым условиям. С одной стороны она должна быть достаточно малой, чтобы процесс можно было считатьквазистатическим. Иначе при резком изменении хода поршня давление, которое его перемещает, будет отличаться от давления в целом по газу. То есть газ должен находиться в равновесии, без турбулентностей и неоднородностей давления и температуры. Для этого достаточно передвигать поршень со скоростью, существенно меньшей, чем скорость звука в данном газе. С другой стороны скорость должна быть достаточно большой, чтобы можно было пренебречь обменом тепла с окружающей средой и процесс оставался адиабатическим. Однако работа может совершаться и другими путями — например, идти на преодоление межмолекулярного притяжения газов. В этом случае параллельно с изменением внутренней энергии будет происходить процессы совершения нескольких работ разной физической природы, и основное уравнение термодинамики примет вид: где , — дифференциальное выражение для работы, — внешние параметры, которые меняются при совершении работы, — соответствующие им внутренние параметры, которые при совершении малой работы можно считать постоянными. При совершении работы путём сжатия или расширения внутренний параметр — давление. Внешний параметр — объём.

Внутренняя энергия является однозначной функцией состояния системы. Поэтому применительно к адиабатическому процессу её изменение имеет тот же физический смысл, что и в общем случае. Согласно закону Джоуля, выведенному экспериментально, внутренняя энергия идеального газа не зависит от давления или объёма газа. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, [14]. Иными словами — это предельное соотношение изменения внутренней энергии и породившего его изменения температуры. При этом, по определению частной производной считается только то изменение внутренней энергии, которое порождено именно изменением температуры, а не другими сопутствующими процессами. Так как внутренняя энергия идеального газа является функцией только температуры, то где — число молей идеального газа. Диаграмма адиабатического процесса (адиабата)в координатах р,V изображается гиперболой.Это объясняется тем,что при адиаб/сжатии увеличения давления из-за уменьшения объёма и повышением тем-ры.

21 2 начало термодинамики. Обратимый процесс.Приведенное кол-во теплоты.Энтропия.Неравенство Клаузиуса.Статистический смысл 2 начало термодинамики.Закон Больцмана. Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину. Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему. Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая — способ его проведения. Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.

Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние. Единица измерения в Международной системе единиц (СИ): Джоуль.

Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы. Термодинамическая система — это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики.

Термодинамическое определение энтропии

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение общего количества тепла к величине абсолютной температуры (то есть тепло, переданное системе, при постоянной температуре): .

Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся выделением тепла, вследствие изменения структуры. Рудольф Клаузиус дал величине имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию. Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так: , где — приращение (дифференциал) энтропии некоторой системы, а — бесконечно малое количество теплоты, полученное этой системой. Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия). Поскольку энтропия является функцией состояния, в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты является функцией процесса, в котором эта теплота была передана, поэтому считать полным дифференциалом нельзя. Энтропия, таким образом, согласно вышеописанному, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамики позволяет определить её точнее: предел величины энтропии равновесной системы при стремлении температуры к абсолютному нулю полагают равным нулю.

Неравенство Клаузиуса (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), не положительно. Подведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода (определяется лишь начальным и конечным состояниями системы) - для квазистатических процессов неравенство Клаузиуса обращается в равенство . Частный случай: два тепловых резервуара

Пусть система I сообщается с тепловыми резервуарами и температур и соответственно. Безразлично, какой из них является нагревателем, а какой — холодильником (направление передачи тепла определяется знаком — положительным, если оно получено системой, и иначе отрицательным). Согласно второй теореме Карно КПД цикла Карно — максимальный; для системы I выполняется . Отсюда следует частный случай[2] неравенства Клаузиуса: (При обратимом процессе, в частности при цикле Карно, выполняется равенство.)

Формулировка второго начала термодинамики, данная Больцманом, утверждает, что все процессы в природе протекают в направлении, приводящем к увеличению вероятности состояния системы Второе начало термодинамики, принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоу-левой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона: Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела

где - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную можно определить как

где — постоянная Планка, — постоянная Больцмана, — скорость света. Численное значение Дж·с−1·м−2 · К−4. Закон открыт независимо Й. Стефаном и Л. Больцманом в предположении пропорциональности плотности энергии излучения его давлению . В 1880 г. подтверждён Лео Гретцем.Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по спектру излучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина. Применение закона к расчёту эффективной температуры поверхности Земли даёт оценочное значение, равное 249 К или −24 °C.





Дата публикования: 2015-02-03; Прочитано: 1137 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...