Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Предел монотонной ограниченной последовательности. Число е. Натуральные логарифмы



Не всякая последовательность имеет предел. Сформулируем без доказательства признак существования предела последовательности.

Теорема 15.3 (Вейерштрасс). Всякая монотонная ограниченная последовательность имеет предел.

В качестве примера на применение этого признака рассмотрим последовательность.

По формуле бинома Ньютона

Из равенства (15.3) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число 1/n — убывает, поэтому величины (1-1/n), (1-1/n),... возрастают.

Поэтому последовательность {хn} = { (1+1/n)n }— возрастающая, при этом

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства (15.3) на единицу; правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменив числа 3, 4, 5,..., стоящие в знаменателях дробей, числом 2:

Сумму в скобке найдем по формуле суммы членов геометрической прогрессии:

Поэтому

Итак, последовательность ограничена, при этом для "n є N выполняются неравенства (15.4) и (15.5):

Следовательно, на основании теоремы Вейерштрасса последовательность имеет предел, обозначаемый обычно буквой е:

Число е называют неперовым числом. Число е иррациональное, его приближенное значение зэавно 2,72 {е=2,718281828459045..). Число е принято за основание натуральных логарифмов: логарифм по основанию е называется натуральным логарифмом и обозначается ln(x), т. е. Ln(x)=logex. Найдем связь между натуральным и десятичным логарифмами. По определению логарифма имеем х=еln(x). Прологарифмируем обе части равенства по основанию 10:

Пользуясь десятичными логарифмами, находим lge ≈ 0,4343. Значит, lgx ≈ 0,4343•ln(х). Из этой формулы следует, что ln(x) ≈ 1/0.4343 lg(x), т. е. Ln(х) ≈ 2,3026 lgx. Полученные формулы дают связь между натуральными и десятичными логарифмами.

§ 16. Предел функции





Дата публикования: 2015-01-26; Прочитано: 1056 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...