Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Корпускулярно-волновая концепция материи. Структурные уровни организации материи в рамках современной физики



Мы в изложении физических концепций познания мира будем опираться на объём знаний по физике, полученных Вами в среднем (полном) общем образовании, расширяя их концептуально в рамках релятивистской, квантово-полевой и современной физических исследовательских программ.

Квантово-полевая физическая исследовательская программа опирается на корпускулярно-волновой дуализм материи, выраженный в двойственной природе микрочастиц: корпускула-волна в формулах М. Планка и Луи де Бройля ( и , где – постоянная Планка; W – энергия микрочастицы; w - циклическая частота; – импульс микрочастицы; – волновой вектор, направленный вдоль направления скорости микрочастицы, λ – длина волны.) и обуславливающий двойственность существования материи в форме вещества и фундаментальных полей взаимодействия. В квантово-полевой физической исследовательской программе была установлена дискретность материи в рамках структурных уровней вещества и фундаментальных полей взаимодействия, что подчёркивает особую роль физической структурной организации материи (см. схему 20) в моделировании и познании Мира.

Схема 20. Физическая структурная организация материи.

МАТЕРИЯ

Вещество Фундаментальные поля взаимодействия
Гипермир – гипотетическое представление о множественности мегамиров. Экспериментально не доказано
Мегамир – мир мегаобъектов и мегасостояний больших космических масштабов и скоростей. Мегаобъекты и мегасистемы: метагалактики, галактики, звезды, планетные системы, планеты, спутники планет, астероиды, кометы, диффузная материя. Доминирует гравитационное поле взаимодействия. Кванты поля – гравитоны плюс гравитино (?). Пространство измеряется в астрономических единицах, световых годах и парсеках; время – в миллионах и миллиардах лет.
Макромир – мир макрообъектов и макросостояний, размерность которых соотносима с масштабами жизни на Земле. Примеры макрообъектов и макросистем: геосферы, города, машины, приборы, физико-химические, геологические, биологические макросистемы. Доминирует электромагнитное поле взаимодействия. Кванты поля – фотоны. Пространство измеряется в нм, мм, см, м и км; время в секундах (с), минутах (мин.), часах и годах.
Микромир – мир микрообъектов и микросостояний, мир предельно малых измеренных экспериментально масштабов. Пространственные характеристики исчисляются от 10-10 до 10-18 м, а время от бесконечности до 10-24 с. Микрообъекты и микросистемы: молекулы, атомы, ядра атомов, элементарные частицы, в том числе и кванты полей взаимодействия, «физический» вакуум. Доминируют: слабое взаимодействия, ответственное за взаимодействие элементарных частиц при их взаимопревращениях. Ярко проявляются в b-- и b+- распадах; кванты поля: тяжелые промежуточные бозоны; сильное поле взаимодействия, ответственное за взаимодействие кварков и андронов, кванты поля: глюоны и p-мезоны; электромагнитное поле взаимодействия ответственное за существование атомов и молекул
Гипомир – гипотетический мир в микромире, идущий еще от Планка. Гипообъекты и гипосистемы: планкеон, «пузырьковая» сингулярность, «физический» вакуум. Пространство и время дискретны: квантуются в рамках представления о модели планкеона: ℓпл.~10-35 м, tпл.~10-44 с, r пл.~1096 кг/м3, W пл.~ 1019 ГэВ.

Гипотетические модели гипермира и гипомира, предложенные К. Х. Рахматулиным, в определенной степени пересекаются, если в качестве основного фундаментального объекта Природы принять физический вакуум как совокупность фундаментальных полей взаимодействия в низшем энергетическом состоянии. Структура вакуума (модель А. Линде), в этих условиях задается размером, временем, плотностью и энергией Планкеона («пространственно-временная пена»). Квантовые флуктуации плотности и размеров приводят к тому, что расширяющие «пузыри» становятся неравноправными: в «кипящей» большой Вселенной появляется мини-Вселенная (а возможно и не одна – вставка наша), раздувающаяся с огромной скоростью. Это одна из естественнонаучных концепций происхождения Вселенной (см.: А.Д. Линде. Физика элементарных частиц и инфляционная космология. – М.: Мир, 1990).

В модели гипомира в последнее время все чаще используют и теорию струн, которую один из ее разработчиков Д. Гросс считает единственной работоспособной теорией в масштабах шкалы Планка, в основе которой лежат фундаментальные размеры физических констант: скорости света м/с, кванта действия Дж×с и гравитационной постоянной Ньютона м3/кг×с2, из которых и вытекают определения длины, энергии и времени планкеона в этих фундаментальных единицах. Теория струн представляет собой теорию нового типа, идея которой в том, что струна может принимать множество различных конфигураций и представляет собой значительно более усложненный объект, нежели частица-точка. Может статься, что все наблюдаемые нами частицы – суть просто различные гармоники, различные моды колебаний одной и той же струны. Именно такой подход постулируется теорией струн и считается, что теория струн обладает потенциальной возможностью стать объединяющей теорией всех взаимодействий и структурных уровней материи, то есть сможет объяснить ряд явлений в гипомире и микромире.

Применительно к макромиру и мегамиру подходы, основанные на теории струн, носят пока спекулятивный характер. Однако, по мнению американского физика, лауреата Нобелевской премии Д. Гросса, существенных успехов теория струн как в теоретических, так и в экспериментальных исследованиях природы мира достигнет уже в наступившем XXI-м веке.

Итак, современная физическая исследовательская программа – единая теория поля в поисках теорий Великого объединения всех фундаментальных взаимодействий все время развивается, хотя и встречает на своем пути становления и развития целый ряд сложностей и трудностей.

Так, например, главная проблема в теории струн – это проблема типологии пространства-времени, которая в теории струн может непрерывным образом изменяться. Многие теоретики струн внутренне согласны с Эдвардом Уитменом, сказавшим, что пространство – время обречено, т.е. на смену концепции пространственно-временных отношений должна появиться новая концепция, в которой пространство и время – не первичные, а скорее производные понятия. Главная тактика – надо понять, как зарождается, подобно пространству, время. Как отмечает Д. Гросс, мы не знаем как, и это, крупный камень преткновения на пути разгадки тайн теории струн. Свои тайны таят и другие теории Великого объединения взаимодействий. Вообще тайн природы Мира хватит на много поколений землян как в рамках физики, так и в других естественных наук.

2.3. Фундаментальные взаимодействия и теория «Великого объединения»

В классической физике понятия вещества и поля резко дифференцированы и опираются на разные концепции. Понятие вещества опирается на корпускулярную научную программу, и вещество определяется, как система частиц – корпускул: атомов, ионов, молекул. Различают четыре агрегатных состояний вещества: газ, жидкость, твердое тело и плазма, которые относительно детально Вы изучили в рамках среднего (полного) общего образования. Понятие поля опирается на континуалисткую научную программу и определяется, как материальный носитель взаимодействий. Наиболее полно раскрыты классические свойства электромагнитного поля на основе введения контролируемых силовых характеристик электрического поля и магнитного поля . Макроскопические свойства электромагнитного поля описываются уравнениями Максвелла, физический смысл которых детально подтвержден экспериментом. Мы сформулируем физический смысл уравнений. Первое уравнение Максвелла () выражает закон создания магнитных полей () действием электрических токов () и переменных электрических полей (). Второе уравнение Максвелла () выражает закон создания вихревых электрических полей () действием переменных магнитных полей (). Математическая операция указывает на наличие в каждой точке электромагнитного поля связанных между собой вихревых переменных магнитных () и электрических () полей. Уравнения, которые по образному выражению Л. Больцмана «рукой Максвелла начертал сам Бог», лежат в основе теории электромагнитных волн и, следовательно, в физических основах радио- и телекоммуникаций, в том числе и информационной системы Internet. Кроме того, из них следует, что скорость передачи электромагнитного взаимодействия не может превышать скорости света в вакууме с, т.е. полевая теория близкодействия, которая была затем распространена на все фундаментальные поля взаимодействий и сменила господствующую до конца XIX в. гипотезу дальнодействия.

В классической физике были известны всего два фундаментальных взаимодействия: гравитационное и электромагнитное, базирующееся на положении, следующем из уравнений Максвелла: электричество и магнетизм – две стороны одной и той же электромагнитной силы.

Гравитационное и электромагнитное взаимодействия получили физическое описание в фундаментальных силах соответствующих взаимодействий, выраженных как в корпускулярной форме взаимодействия гравитационных зарядов (точечных масс): (закон всемирного тяготения И. Ньютона) и точечных электрических зарядов: (закон Ш. Кулона), так и в полевой форме: , где - локальное значение напряжённости гравитационного поля, совпадающее на планете Земля с ускорением свободного падения; = [ ] – обобщённая сила Лоренца.

В квантово-полевой физической исследовательской программе были открыты ещё два фундаментальных взаимодействия: сильное и слабое, а также исследованы основные сравнительные характеристики фундаментальных взаимодействий (см. схему 21).

Схема 21. Основные сравнительные характеристики фундаментальных взаимодействий.

Вид взаимодействия Примеры проявления взаимодействий Константа взаимодействия Радиус взаимодействия
Сильное Взаимодействие нуклонов в ядрах атомов, а также всех адронов   1,0   м
Электромагнитное Взаимодействие электрических зарядов, токов, электрических и магнитных полей    
Слабое Взаимодействие элементарных частиц при радиоактивном распаде и их взаимопревращаемости             м
Гравитационное Взаимодействие всех тел

В 1964 году была выдвинута М. Гелл-Манном гипотеза о том, что адроны не являются элементарными, а составными частицами, состоящими из фундаментальных элементарных частиц – кварков, а в 1967 году С. Вайнберг, Ш. Глэшоу и А. Салам показали, что электромагнитное и слабое взаимодействия представляют собой одно и то же взаимодействие (электрослабое), что было подтверждено в 1983 году экспериментально на ускорителе в ЦЕРН при энергии Гэв.

Теория вводит дополнительные частицы (два разнозаряженных бозона и , а также нейтральный бозон ) и новое поле особого типа (скалярное поле Хиггса). Эти открытия стимулировали теорию «Великого объединения» (ТВО) сильного и слабого взаимодействий, которые используют понятие единого калибровочного поля (единой теории элементарных частиц), а уровень будущих физических теорий строится на модели гипомира с соответствующими планковскими величинами. Структура ТВО отражена на схеме 22.

Схема 22. Структура теории «Великого объединения».

Сильное и слабое взаимодействия объединяются при очень высоких энергиях порядка Гэв. Для подтверждения ТВО необходимо экспериментально обнаружить распад протона (время жизни протона более лет (возраст Вселенной ~ лет).

Схема ТВО не включает объединения гравитационного взаимодействия с другими взаимодействиями из-за практически отсутствующего воздействия гравитации на интенсивность остальных взаимодействий и на ход реакций превращения элементарных частиц, хотя теоретические схемы такого «Сверхвеликого объединения» разрабатываются на основе объединения супергравитации с внутренней симметрией ОТО. Данная теория вводит частицы – переносчики со спином (гравитоны) и частицы со спином (гравитино). Важную роль в схемах такого объединения играет теория струн, а также новые представления о суперсимметрии, связывающей между собой бозоны (переносчики) и фермионы (кварки и лептоны). Объединение считается возможным при энергиях порядка Гэв, что соответствует температуре (такие условия соответствуют ранней стадии возникновения Вселенной).

Характерно, что будущая теория строится на трёх основных мировых константах: - скорости распространения взаимодействия (и информации); - гравитационной постоянной и - постоянной Планка, которые задают и общую структуру разделов теоретической физики (см. схему 23).

Схема 23. Общая структура разделов теоретической физики.

С другой стороны, мировые константы определяют границы применимости современных физических теорий. Мы особое внимание уделим концептуальным основам физических теорий, опирающихся фактически на одну из мировых констант. При этом нам представляется важным к основным константам () добавить ещё одну мировую константу K Б = Дж / K – постоянную Больцмана, которую можно рассматривать как минимальную энтропию, т.е. как минимальную меру Хаоса, и связать с ней взаимопроникновение Порядка и Хаоса в равновесной термодинамике закрытых термодинамических систем, а тем более, в неравновесной термодинамике открытых диссипативных систем и структур.

Как мы уже отмечали, понятия системы, структуры, Хаоса и Порядка имеют принципиальное значение для всего общего естествознания.





Дата публикования: 2015-01-10; Прочитано: 475 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...