Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ответ: 7/16 4 страница



Подставив в последнее равенство (см. задачу 73), получим:

.

#75

Наступление события необходимо влечёт наступление события . Доказать, что

Решение:

По условию, наступление события АВ влечёт наступление события , поэтому. (*)

Используя тождества , ,

и учитывая неравенство (*), получим

##75##


#76

Доказать, что PA(B)≥1 - P(B)/P(A). Предполагается, что P(A)>0.

Решение.

Справедливо неравенство: P(A) + P(B) - P(AB) ≤1.

Воспользуемся тождествами: P(AB) = P(A)*PA(B), P(B) = 1 – P(B).

Подставив P(AB) = P(A)*PA(B), P(B) = 1 – P(B) в P(A) + P(B) - P(AB) ≤1,

получим P(A) + 1 – P(B) – P(A)*PA(B) ≤1, или

P(A)*PA(B) ≥ P(A) – P(B).

Разделив обе части неравенства на положительное число P(A), окончательно имеем:

PA(B) ≥ 1 - P(B) / P(A)

#77

По условию, наступление события необходимо влечет наступление события , следовательно (см. задачу 48), . Таким образом, если будет доказано неравенство (*), то будет справедливо и неравенство, указанное в условии задачи.

Докажем неравенство (*). Воспользуемся тождествами:

(**)

Из трех событий , , можно составить следующую полную группу «сложных событий», состоящих из появлений и непоявлений рассматриваемых трех событий:

-появились все три события,

, ,

, , – появилось одно событие, а два других не появились,

– не появились все три события.

Сумма вероятностей событий, образующих полную группу, равна единице, поэтому

Отсюда

. (***)

Подставив (**) в (*) и используя (***), после упрощений получим

Учитывая, что каждое слагаемое в квадратной скобке неотрицательно, окончательно получим

.

#78

Вывести теорему сложения вероятностей для трех совместных событий:

P(A + B + C) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(ABC).

Предполагается, что для двух совместных событий теорема сложения уже доказана:

P(A1 + A2) = P(A1) + P(A2) – P(A1A2).

Решение.

Сведем сумму трех событий к сумме двух событий: А + В + С = (А + В) + С.

Воспользуемся теоремой сложения вероятностей двух событий:

Р(А + В + С) = Р[(А + В) + С] = Р(А + В) + Р(С) - Р[(А + В)*С] = Р(А + В) + Р(С) - Р[(А*С) + (В*С)]

Применим теорему сложения вероятностей двух совместных событий дважды (для событий А и В, а также для событий АС и ВС):

Р(А + В + С) = Р(А) + Р(В) – Р(АВ) + Р(С) - {Р(АС) + Р(ВС) – Р[(АС)(ВС)]}.

Учитывая, что Р[(АС)(ВС)] = Р(АВС), окончательно получим P(A + B + C) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(ABC).

#79

Даны три попарно независимых события A, B, C, которые, однако, все три вместе произойти не могут. Предполагая, что все они имеют одну и ту же вероятность p, найти наибольшее возможное значение p.

Решение.

Так как события попарно независимы и , также верно .

Обозначим . Выразим через , пользуясь теоремой сложения для трёх несовместных событий:

.

Решив это уравнение относительно , получим .

В таком случае достигает максимального значения (при ).

Если , то, на первый взгляд, . Покажем, что допущение приводит к противоречию. Действительно, при условии, что ; или, так как , при условии, что . Отсюда .

Итак, наибольшее возможное значение .

#80

Вероятность отказа первого элемента равна 0,1,второго -

0,15,третьего – 0,2

То есть =0,1, =0,15, =0,2

=0,9, =0,85, =0,8

Тока в цепи не будет, если откажет хотя бы один элемент

То есть нужно использовать формулу появления хотя бы одного события (P(A)=1- *…* )

Значит, искомая вероятность равна 0,388

(P(A)=1- * * =1-(0,9*0,85*0,8)=0,388)

Ответ:0,388

#81

Устройство содержит два независимо работающих элемента. Вероятности отказа элементов соответственно равны 0,05 и 0,08. Найти вероятность отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент.

Решение: Вероятность того, что откажет 1й элемент, 2й элемент или оба, обратна вероятности того, что ни один не откажет, т.е.:

Ответ: 0,126.

#82

Для разрушения моста достаточно попадания одной авиационной бомбы. Найти вероятность того, что мост будет разрушен, если на него сбросить четыре бомбы, вероятности попадания которых соответственно равны: 0,3; 0,4; 0,6; 0,7.

Решение: При последовательном сбрасывании четырех бомб мост будет разрушен (событие А), если в него попадет хотя бы одна бомба. Следовательно, искомая вероятность равна:

Ответ: 0,9496.

#83

Три исследователя, независимо один от другого, производят измерения некоторой физической величины. Вероятность того, что первый исследователь допустит ошибку при считывании показаний прибора, равна 0,1. Для второго и третьего исследователей эта вероятность соответственно равна 0,15 и 0,2. Найти вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку.

Решение.

Вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку равна:

Р(А) = 1 - q1q2q3 = 1 –(1 – 0,1)*(1 – 0,15)*(1 – 0,2) = 0,388.

#84

Вероятность успешного выполнения упражнения

для каждого из двух спортсменов равна 0,5. Спортсмены

выполняют упражнение по очереди, причем каждый делает

по две попытки. Выполнивший упражнение первым полу-

получает приз. Найти вероятность получения приза спорт-

спортсменами.

Решение. Для вручения приза достаточно, чтобы хотя бы

одна из четырех попыток была успешной. Вероятность успешной

попытки р = 0,5, а неуспешной q=1 - 0,5 = 0,5. Искомая вероятность

Р = 1 - q^4 = 1 —0,5^4 =0,9375.

#85

Вероятность попадания в мишень каждым из двух стрелков равна 0,3. Стрелки стреляют по очереди, причем каждый должен сделать по два выстрела. Попавший в мишень первым получает приз. Найти вероятность того, что стрелки получат приз.

Решение. Для получения приза достаточно, чтобы хотя бы одна из четырех попыток была успешна. Вероятность успешной попытки p=0,3, неуспешной q=1-p=0,7. Тогда искомая вероятность будет равна P=1-q*q*q*q=1- ≈0,76

#86

Вероятность хотя бы одного попадания стрелком в мишень при трех выстрелах равна 0,875. Найти вероятность попадания при одном выстреле.

Решение:

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q3, где q — вероятность промаха. По условию, P (A) = 0,875. Следовательно,

0,875=1—q3, или q3 = 1—0,875 = 0,125.

Отсюда q= =0,5.

Искомая вероятность р = 1— q = 1—0,5 = 0,5.

#87

Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Решение:

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q4, где q — вероятность промаха. По условию, P (A) = 0,9984. Следовательно,

0,9984=1—q4, или q4 = 1—0,9984= 0,0016.

Отсюда q= =0,2.

Искомая вероятность р = 1— q = 1—0,2 = 0,8.

#88

Условие:

Многократно измеряют некоторую физическую величину. Вероятность того, что при считывании показаний прибора допущена ошибка, равна . Найти наименьшее число измерений, которое необходимо произвести, чтобы с вероятностью можно было ожидать, что хотя бы один результат измерений окажется неверным.

Решение:

Вероятность хотя бы одной ошибки из считываний равна , где , и - вероятность ошибки при одном считывании. Из условия получим:

; ; ;

Следовательно, искомое число измерений равно , где – целая часть числа

#89

В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется

белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Решение:

Обозначим через А событие - извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1 - белых шаров нет, В2 - один белый шар, В3 - два белых шара.

Поскольку всего имеется три гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3, т. е. P(B1) = P(B2) = P(B3) =

Вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, . Если в урне был один белый шар, то . Условная вероятность того, что будет извлечен белый шар, при условии, что в урне было два белых шара

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

Ответ: P(A)=

#90

В урну, содержащую n шаров, опущен белый шар, после наудачу извлечен один шар. Найти вероятность того что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров по цвету.

Решение:

Обозначим через А событие - извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1- 1 белый шар, В2- 2 белых шара... Вn-n белых шаров. Поскольку всего имеется n гипотез, причем по условию они равновозможны и сумма вероятностей равна единице, то вероятность каждой гипотезы равна . По гипотезе В1 условная вероятность вытащить белый шар равна , по гипотезе В2 условная вероятность вытащить белый шар равна … по гипотезе Вn условная вероятность вытащить белый шар равна .

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

#91

Условие задачи:

В вычислительной лаборатории имеется шесть клавишных автоматов и четыре полуавтомата. Вероятность того, что за время выполнения некоторого расчета автомат не выйдет из строя, равна ; для полуавтомата эта вероятность равна . Студент производит расчет на наудачу выбранной машине. Найти вероятность того, что до окончания расчета машина не выйдет из строя.

Решение задачи:

Обозначим через событие – произведен расчет на наудачу выбранной машине. Возможны следующие гипотезы в данном эксперименте: - расчет производится на клавишном автомате, - расчет производится на полуавтомате.

Так как имеется 6 клавишных автоматов и 4 полуавтомата, то вероятность того, что произойдет гипотеза , равна . А вероятность того, что произойдет гипотеза , равна .

Условная вероятность того, что клавишный автомат не выйдет из строя, равна , т.е . А условная вероятность того, что полуавтомат не выйдет из строя, равна , т.е .

Искомая вероятность того, что до окончания эксперимента машина не выйдет из строя, находим по формуле полной вероятности:

Ответ: P(A)=0,89

#92

В пирамиде пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

Решение

Рассмотрим события:

A – стрелок поразит мишень

В1 – взятая наудачу винтовка снабжена оптическим прицелом

В2 – взятая наудачу винтовка без оптического прицела

Следовательно, по условию, вероятность события А при условии события В1: , а вероятность события А при условии события В2: .

В свою очередь вероятность события В1: , т.к. всего винтовок 5, а благоприятствуют событию 3 винтовки. Аналогично .

Пользуясь формулой полной вероятности , получим:

Ответ: 0,85

#93

Задание: В ящике содержится 12 деталей, изготовленных на заводе № 1, 20 деталей —на заводе № 2 и 18 деталей— на заводе № 3. Вероятность того, что деталь, изготовленная на заводе № 1, отличного качества, равна 0,9; для деталей, изготовленных на заводах N° 2 и № 3, эти вероятности соответственно равны 0.6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.

Решение: Обозначим через A событие – извлечена деталь отличного качества. Возможно три варианта гипотезы: – извлечена деталь отличного качества, изготовленная заводе №1; – извлечена деталь отличного качества, изготовленная заводе №2; – извлечена деталь отличного качества, изготовленная заводе №3. По условию . Найдём вероятности того, что извлечённая деталь изготовлена на заводе №1, №2, №3.

где - общее число изготовленных на 3-х заводах деталей, – количество деталей изготовленных, соответственно, на заводах №1, 2, 3.

Искомая вероятность вероятность того, что извлеченная наудачу деталь окажется отличного качества находится по формуле полной вероятности:

#94

В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

Решение:

Обозначим через событие – извлечён белый шар. Возможны следующие гипотезы:

- белый шар взят из первой урны, - белый шар взят из второй урны.

Поскольку всего имеется две гипотезы, причём по условию они равновероятны, и сумма вероятностей гипотез равна единице(т.к. они образуют полную группу событий), то вероятность каждой из гипотез равна , т.е. .

Условная вероятность того, что белый шар будет извлечён из первой урны равна: =

Условная вероятность того, что белый шар будет извлечён из второй урны равна: =

По формуле полной вероятности находим:

#95

В каждой из трех урн содержится 6 черных 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

Решение.

A1 – вероятность того, что из первой урны извлечен белый шар.

A2 – вероятность того, что из первой урны извлечен черный шар.

P(A1)=4/10 P(A2)=6/10

B1 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну белый шар.

B2 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну черный шар.

P(B1)=5/11 P(B2)=4/11

C1 – вероятность того, что из второй корзины будет извлечен белый шар.

C2 – вероятность того, что из второй корзины будет извлечен черный шар.

P(C1)=P(A1)*P(B1)+P(A2)*P(B2) P(C1)=4/10*5/11+6/10*4/11=2/5

P(C2)=1-P(C1) P(C2)=1-2/5=3/5

D1 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну белый шар.

D2 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну черный шар.

P(D1)=5/11 P(D2)=4/11

E – вероятность того, что из третьей урны будет извлечен белый шар.

P(E)= P(D1)*P(C1)+P(D2)*P(C2) P(E)=5/11*2/5+4/11*3/5=2/5

Ответ: 2/5.

#96

Вероятности того, что во время работы цифровой электронной машины произойдет сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах,

относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.

Решение: Пусть А – событие того, что сбой будет обнаружен, тогда из формулы полной вероятности следует, что:

PA= PB1PB1A+PB2PB2A+PB3PB3A= 0,3*0,8+0,2*0,9+0,5*0,9=0,87.

#97

Обозначим через А событие – деталь отличного качества

Можно сделать два предположения

-деталь произведена первым автоматом (так как производительность первого автомата вдвое больше второго автомата, то Р()=2/3)

-деталь произведена вторым автоматом (Р()=1/3)

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,6

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,84

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна





Дата публикования: 2015-01-10; Прочитано: 3112 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.028 с)...