Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Аппроксимация производных



Для аппроксимации (замены) первой производной можно воспользоваться формулами:

- правая разностная производная,

- левая разностная производная,

- центральная разностная производная.

т.е., возможно множество способов аппроксимации производной.

Все эти определения следуют из понятия производной как предела: .

Опираясь на разностную аппроксимацию первой производной можно построить разностную аппроксимацию второй производной:

(3)

Аналогично можно получить аппроксимации производных более высокого порядка.

Определение. Погрешностью аппроксимации n- ой производной называется разность: .

Для определения порядка аппроксимации используется разложение в ряд Тейлора.

Рассмотрим правую разностную аппроксимацию первой производной:

Т.е. правая разностная производная имеет первый по h порядок аппроксимации.

Аналогично и для левой разностной производной.

Центральная разностная производная имеет второй порядок аппроксимации.

Аппроксимация второй производной по формуле (3) также имеет второй порядок аппроксимации.

Для того чтобы аппроксимировать дифференциальное уравнение необходимо в нем заменить все производные их аппроксимациями. Рассмотрим задачу (1), (2) и заменим в(1) производные:

.

В результате получим:

(4)

Порядок аппроксимации исходной задачи равен 2, т.к. вторая и первая производные заменены с порядком 2, а остальные – точно.

Итак, вместо дифференциальных уравнений (1), (2) получена система линейных уравнений для определения в узлах сетки.

Схему можно представить в виде:

т.е., получили систему линейных уравнений с матрицей:

Данная матрица является трехдиагональной, т.е. все элементы, которые расположены не на главной диагонали и двух прилегающих к ней диагоналях равны нулю.

Решая полученную систему уравнений, мы получим решение исходной задачи.

Для решения таких СЛАУ имеется экономичный метод прогонки.

Рассмотрим метод прогонки для СЛАУ:

(1)

Решение данной системы ищем в виде:

(2)

Подставляя в первое уравнение, получим:

Здесь учтено, что данное соотношение должно выполняться при любом

Так как

, (3)

то подставляя (3) во второе уравнение, получим:

Сравнивая с (2) получим

.

Таким образом, можно найти все .

Тогда из последнего уравнения (1) находим:

Затем последовательно находим:

Таким образом, алгоритм метода прогонки можно представить в виде:

1) Находим

2) Для i=1,n-1: (4)

3) Находим

4) Для i=n-1 до 1 находим:

Шаги 1),2) – прямой ход метода прогонки, 3),4) – обратный ход метода прогонки.

Теорема. Пусть коэффициенты ai, bi системы уравнений при i =2, 3, …, n–1 отличны от нуля и пусть

при i =1, 2, 3, …, n. Тогда прогонка корректна и устойчива.

При выполнении этих условий знаменатели в алгоритме метода прогонки не обращаются в нуль и, кроме того, погрешность вычислений, внесенная на каком либо шаге вычислений, не будет возрастать при переходе к следующим шагам. Данное условие есть ни что иное, как условие диагонального преобладания.

Для нашей краевой задачи имеем:

Тогда: , ,

Для нашей задачи условие устойчивости имеет вид:

.

Пусть

. (6)

Тогда

Пример. Найти решение задачи:

Выпишем разностную схему

Условие устойчивости примет вид

Возьмем .

Тогда

Или

Формулы прогонки были получены для СЛАУ (1):

Здесь x замены на u.

Следовательно,

Решим СЛАУ методом прогонки. Вычисления оформим в виде таблицы:

I ai ci bi fi alfai betai ui
        0.2 0.6863 -0.0039 0.4701
        0.4 0.8598 -0.0113 0.6906
        0.6 0.9186 -0.0202 0.8164
        0.8 0.9403 -0.0296 0.9107
    -1         1.0000

Порядок вычислений по формулам (4):

Ответ в столбце ui.

Если забыли формулы, то их можно легко вывести. Главное запомнить основную формулу:

Прямой ход

Обратный ход

На практике часто граничные условия могут иметь более общий вид.

Рассмотрим следующую краевую задачу:

Найти решение ОДУ 2-го порядка

,

удовлетворяющую краевым условиям:

В этом случае при построении разностной схемы необходимо еще аппроксимировать и краевые условия.

Аппроксимация:

В результате получим разностную схему:

Или






Дата публикования: 2015-01-14; Прочитано: 3707 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...