Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Механическое гармоническое колебание. Смещение колебательной точки, скорость, ускорение, энергия кинетическая и энергия потенциальная и их графики



86. Механические и гармонические колебания. Смещение колеблющейся точки.

Смещение: x=Acos(ώt+φ); V=dx/dt= -Aωsin(ωt+φ)= -Aωcos(ωt+φ+π/2); a=dV/dt= -Aω2cos(ωt+φ). Ампли туды скорости и ускорения Aω и Aω2. Фаза скоро сти отлична от фазы смещения на π/2. Фаза уско рения от фазы смещения- на π. В момент време ни, когда х=0 скорость приобретает наибольшее значение. Если х достигает максимально отрица тельного значения, то ускорение приобретает наиб ольшее положительное значение. Сила, действую щая на колеблющуюся точку, по второму закону Ньютона: F=ma; F= -mV2x; (x=Acos(ωt+φ)). Сила про порциональна смещению точки и направлена в противоположную сторону. Кинетическая энергия колеблющейся точки: T=mV2/2= (mA2ω2/2)sin2((ωt+φ) = mA2ω2/4)[1-cos2(ωt+φ)]. Потонцеальная энергия колеблющейся точки: П=òFdx= mω2x2/2= mω2A2cos2 (ωt+φ)/2= mA2ω2/4[1+cos2(ωt+1)] E=T+П= mA2ω2/2

87.Гармонический колебания пружинного и математического маятника.

Пружинный маятник – груз массой m, подвешенный на абсолютно упругой пружине и совершающий колебания под действием упругой силы F= -kx (k-жёсткость пружины). Уравнение движения матема тического маятника: F=ma; F=m(d2x/dt2); -kx=m(d2x/ dt2); d2x/dt2+(k/m)x=0; ω2=k/m; d2x/dt22x=0-динами ческое уравнение; ω2=Ök/m –циклическая частота. T=2πÖm/k. Эта формула справедлива только для упругих колебаний в пределах выполнения закона Гука (масса груза >> массы пружины).

88. Физический маятник, уравнение движения.

Физический маятник – твердое тело, совершающий под действием силы тяжести колебания вокруг не подвижной горизонтальной оси подвеса, не про ходящий через центр масс тела. Уравнение движ ения маятника. Если маятник отклонён на некото рый угол L, то на основании основного уравнения динамики вращательного движения M=Iβ2; M=-mglsinL; Iβ2+mglsinL=0; d2L/d2t+(mgl/I)sinL=0. При небольших отклонениях L от положения равновесия, положение физического маятника будет описы ваться уравнением: dL2/dt22L=0; ω2=mgl/I; T=2π/ω=2πÖI/mgl; I/ml=L; T=2πÖL/g; L=Locos(ωt+φ). Приведённая длинна физического маятника: C=I/ml- длинна математического мятника, который колеблется с физическим маятником синхронно. Точка О’, отстоящая от оси подвеса на расстоянии l- центр качения. Точка подвеса О и центр качания О’ обладают свойством взаимозаменяемости. О’О- всегда больше OС. L=I/ml=(Ic+ml2)/ml.

89. Сложение гармонических колебаний и одной частоты биения

x1=cosA1(ωt+φ1); x2=cosA2(ωt+φ2); x=cosA(ωt+φ); A2=A12+A22+2A1A2cos(φ21); tgφ=(A1sinφ1+ A2sinφ2)/ A1cosφ1+ A2cosφ2. Амплитуда зависит от разности фаз: если φ12=±2πm, m=1,2,3 то A=A1+A2; если φ21=(2m+1)π то A=A1-A2. Биение-результат сложения двух колебаний с близкими частотами. x1=Acosωt; x2=Acos(ω+πω)t; x=(2Acos(∆ω/2)t)cosωt.При ∆ω<<ω начальные фазы обоих колебаний равны 0, а результирующее колебание x=(2Acos(∆ω/2)t).

Биение. Это результат сложения двух колебаний с близкими частотами x1=Acos(wt) x2=Acos(w+w)t w <<w начальные фазы обеих колебаний = 0. Результирующие колебания = x=(2Acos(w /2)t)cos(wt) 2Acos(w /2)t – амплитуда биений.

Сложение двух колебаний X=Acoswt y=Bcos(wt+) --2. Уравнение траекторий результирующего колебания находится исключением t из уравнения 2: x2 /A2 -2xy/AB+y2 /B2 =sin2  --ур элипса, оси этого эллипса ориентированы относительно осей x и y произвольно. Эллиптически поляризованные колебания – это колебания траектории которых имеют форму эллипса. Ориентация осейэллипса, его размеры, зависят от амплитуд, складываемых колебаний и разности фаз.Линейно поляризован ные колебания.При =Tm, где m=+-1,+-2 и т.д.последнее уравнение выражается в форме прямой y=+-(B/A)x. Если m=0,-+2,+-4, где + это чётное значение m, а – нечётные.

Циркулярно-поляризованные.Если  =(2m-1), m=0,-+2, и т.д., то А=B, т.е. эллипс ориентирован относительно координатных осей и вырождается в окружность.

90. Сложение двух взаимно перпендикулярных колебаний.

x = Acosωt y=βcos(ωt+φ) (2). Уравнение траектории результирующего колебания находится из уравнения (2). (3) x2/A2-2xy/AB+y2/B2=sin2φ – уравнение эллипса, оси которого, ориентирован ных относительно x и y произвольно. Эллиптически поляризованные колебания – колебания, траекто рия которых имеют форму эллипса. Ориентиро вание осей эллипса и его размеры зависят от амплитуд складываемых колебаний и разности фаз φ. Линейно поляризованные колебания. При φ=πm m=0;±1;±2 последнееуравнение (3) вырож дается в прямую y=±B/A*X, m=0;±1;±2, где «+» соответствует 0 и чётным значениям m, а «-» - нечётным значениям m. Циркулярно- поляризован ные колебания. Если φ=(2m+1)π/2, m=0;±1;±2…, то A=B, т.е. эллипс будет ориентироваться относи тельно координатных осей и вырождаться в окруж ность. Фигуры Виссажу – замкнутые траектории, прочерчиваемые точкой, совершающей одновре менно 2 взаимно ^ колебания. Их форма зависит от соотношения амплитуд, частот и разности фаз.

91. Затухающие колебания и их анализ. Колебания, амплитуда которых с течением времени уменьша ется(из-за диссипации энергии), наз. свободно затухающими колебаниями. Диссипация происхо дит за счёт термических потерь в электро-магнит ном контуре, за счёт работы против сил сопротив ления. Закон затухающих колебаний определён свойствами данной системы. Линейные системы – идеализированные системы, в которых параметры, определяющие физические свойства системы в ходе процесса, не изменяются. Различные по своей природе линейные системы описываются одинаковыми уравнениями, что позволяет осуществлять единственный подход к изучению колебаний различной физической природы.





Дата публикования: 2014-12-08; Прочитано: 461 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...