Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Значение работ школы Т. Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления



Хромосомная теория наследственности Моргана, объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в сельскохозяйственной науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения хромосомной теории позволяют более рационально вести сельскохозяйственное производство. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека. Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и ab), получается гибрид AaBb, образующий четыре сорта гамет AB, Ab, aB и ab в равных количествах. В отдельных случаях новые комбинации признаков (Ab и aB) в Fa совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление, нарушалось, давая новые комбинации. Совместное наследование генов, ограничивающее их свободное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием. Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом. При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом. У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофилия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери - признак отца получило, название крисс-кросс (или крест-накрест). Определение группы сцепления. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме. Прежде чем определить положение гена, т.е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцеплено, составляют группу сцепления. Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом. К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays) гаплоидный набор хромосом и число групп сцепления составляют 10, у гороха (Pisum sativum) - 7, дрозофилы (Drosophila melanogaster) - 4, домовой мыши (Mus musculus) - 20 и т.п. Принцип определения принадлежности гена к той или иной группе сцепления сводится к установлению характера наследования этого гена по отношению к другим генам, находящимся в уже известной группе сцепления. Однако генетическими методами невозможно определить, какая конкретная пара гомологичных хромосом кариотипа аналогична соответствующей группе сцепления. Для этого требуются дополнительные цитогенетические исследования. В последнее время для определения группы сцепления используют метод гибридизации соматических клеток.

Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на стадии четырех нитей. Значение анализирующего скрещивания и тетрадного анализа при изучении кроссинговера.

Открытие кроссинговера. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцеплено - группой. Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. Генетический анализ кроссинговера. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами. Рассмотрим один из классических опытов Моргана на дрозофилы, позволивший ему доказать, что гены расположены в хромосомах в определенном порядке. У дрозофилы рецессивный ген черной окраски тела обозначается b, а его доминантная аллель, определяющая дикую серую окраску, - b+, ген рудиментарных крыльев - vg, нормальных - vg+. При скрещивании мух, различающихся по двум парам сцепленных признаков, серых с рудиментарными крыльями b+vg½½b+vg и черных с нормальными крыльями bvg+½½bvg+ - гибриды F1 b+vg½½ bvg+ серые с нормальными крыльями. Два анализирующих скрещивания: в одном дигетерозиготой является самец, в другом — самка. Если гибридные самцы скрещиваются с самками, гомозиготными по обоим рецессивным генам (♀bvg½½bvg ♂ Х b+vg½½bvg+), то в потомстве получается расщепление в отношении 1 серотелая муха с рудиментарными крыльями: 1 чернотелая с нормальными крыльями. Следовательно, данная дигетерозигота образует только два сорта гамет (b+vg и b+vg) вместо четырех, причем сочетание генов, в гаметах самца соответствует тому, которое было у его родителей. Исходя из указанного расщепления, следует предположить, что у самца не происходит обмен участками гомологичных хромосом. Действительно, у самцов дрозофилы как в аутосомах, так и в половых хромосомах, кроссинговер в норме не происходит, благодаря чему наблюдается полное сцепление генов, находящихся в одной хромосоме. Может возникнуть предположение, что серая окраска тела и рудиментарные крылья, а также черное тело и нормальные крылья - это пары признаков, наследующихся вместе вследствие плейотропного действия одного гена. Однако если взять для анализа гетерозиготных самок, а не самцов, то в Fb, наблюдается иное расщепление. Кроме родительских комбинаций признаков, появляются новые – мухи с черным телом и рудиментарными крыльями, а также с серым телом и нормальными крыльями. В этом скрещивании сцепление тех же генов нарушается за счет того, что гены в гомологичных хромосомах поменялись местами благодаря кроссинговеру. Гаметы с хромосомами, претерпевшими кроссннговер, называют кроссоверными, а с непретерпевшими – некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоверных гамет гибрида — некроссоверными или нерекомбинантными. Механизм кроссинговера Мейотический перекрест. Еще до открытия перекреста хромосом генетическими методами цитологии, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими Х-образных фигур — хиазм (z-греческая буква «хи»). Механизм перекреста хромосом связан с поведением гомологичных хромосом в профазе I мейоза. В профазе I гомологичные хромосомы конъюгируют идентичными участками. Каждая хромосома в биваленте состоит из двух хроматид, а бивалент соответственно из четырех. Таким образом, конъюгация - единственный момент, когда может осуществляться кроссинговер между гомологичными хромосомами. Итак, кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм. Если в одном биваленте произошел не один обмен, а два и более, то в этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды. До сих пор рассматривался кроссинговер между несестринскими хроматидами. Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости. Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе 1 мейоза при образовании гамет. Однако существует соматический или митотическии кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей. Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда, удается наблюдать синапсис гомологичных хромосом и фигуры, похожие на хиазмы, но при этом редукции числа хромосом не наблюдается. Соматический кроссинговер может приводить к мозаичности в проявлении признаков. Учет кроссинговера при тетрадном анализе. У высших организмов о кроссинговере, происшедшем в профазе мейоза, судят по частоте кроссоверных особей-рекомбинантов, считая, что появление их отражает соотношение кроссоверных и некроссоверных гамет. Для прямого доказательства соответствия рекомбинантных зигот кроссоверным гаметам необходимо определять результаты кроссинговера непосредственно по гаплоидным продуктам мейоза. При этом гены должны проявлять свое действие в гаплофазе. Объектом, на котором удалось осуществить подобное исследование, явился, например, плесневой гриб (Neurospora crassa), большая часть жизненного цикла которого приходится на гаплофазу, а диплоидная фаза очень короткая. Вскоре после оплодотворения зигота приступает к мейотическому делению, которое приводит к образованию аска — сумки гаплоидными спорами. При делениях веретено своей осью совпадает с продольной осью сумки. Поэтому продукты мейоза – споры – располагаются в сумке цепочкой. В мейозе протекают два обычных деления созревания, затем одно митотическое, в результате чего в каждой сумке образуется 8 аскоспор. Поскольку у нейроспоры имеется возможность непосредственно определять результаты кроссинговера по продуктам мейоза, установление в этом случае характера расщепления будет прямым доказательством того, что расщепление и кроссинговер осуществляются в мейозе. Этот метод является разновидностью уже описанного тетрадного анализа, но применительно к сцепленным генам. В случае моногибридного скрещивания ожидается расщепление по гаплоидным продуктам (спорам) в соотношении 1А:1а. В асках среди 8 спор - 4 окрашенные (А) и 4 неокрашенные (а) споры, т.е. наблюдается расщепление 1: 1. При отсутствии кроссинговепа между геном и центромерой порядок расположения спор в сумке таков: ААААаааа. Если порядок аскоспор меняется, например ААааААаа, то это будет говорить о происшедшем перекресте между локусом а и центромерой. Расположение спор будет зависеть от расхождения хромосом в первом и втором мейотических делениях. Аллели А и а могут распределиться в сумке по спорам и в ином порядке: ааААааАА, ааААААаа, ААааааАА. В рассматриваемом случае перекрест происходит на участке между локусом данного гена и центромерой. Чем дальше ген а будет удален от центромеры, тем вероятнее перекрест и, следовательно, больше будет кроссоверных асков. Если перекрест произойдет между дистальным концом хромосомы и геном а, то кроссоверное расположение аскоспор не будет обнаружено. Изменение порядка спор в аске при кроссинговере между геном и центромерой возможно только в случае, если он осуществляется на стадии четырех нитей, т. е. между хроматидами. Если бы рекомбинация происходила в момент, когда каждая хромосома еще не удвоилась, порядок спор в аске не изменился бы. Следовательно, изменение порядка спор в данном случае служит доказательством того, что кроссинговер осуществляется между несестринскими хроматидами, т. е. на стадии четырех нитей. Поэтому, говоря о механизме и генетических последствиях кроссинговера, лишь для простоты объясняют его обменом между целыми хромосомами; на самом деле обмен происходит между хроматидами. Указанные особенности нейроспоры дают возможность определить место гена в хромосоме, учитывая расщепление только по одной паре аллелей, что невозможно у диплоидных организмов, для которых нельзя провести тетрадный анализ. Таким образом, тетрадный анализ доказывает, что как менделевское расщепление, так и кроссинговер основаны на закономерностях мейоза.




Дата публикования: 2014-12-08; Прочитано: 1959 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...