Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Формирование хаотических паттернов в онтогенезе медузы Aurelia



Неоднократно была отмечена вариабельность морфологической организации А. aurita с нарушениями тетрарадиальной симметрии: отклонением от нормы числа ропалиев, изменением числа перрадиальных и интеррадиальных каналов, а также вариабельностью числа гонад и карманов желудка (Browne, 1901; Thiel, 1959; Погодин и др., 1997; Gershwin, 1999). Хотя доля таких аномалий может достигать 10 % - 15 % (Browne, 1901; Gershwin, 1999) и даже 22, 8 % (Thiel, 1959), большинство медуз обладают достаточно совершенной тетрарадиальной симметрией. Однако более детальное рассмотрение патерна каналов гастроваскулярной системы медуз, не имеющих перечисленных выше крупных нарушений симметрии, тем не менее выявляет постоянно присутствующую, неизбежную вариабельность морфологической организации перрадиальных каналов как в пределах одного организма (т.е. нарушение радиальной симметрии), так и у разных особей А. aurita (Исаева и др., 2001а).

Неизбежность хаотизации ветвления радиальных каналов представляет и общий интерес для исследования квазифрактальных хаотичных паттернов (см. Глейк, 2001; Шредер, 2001) у многоклеточных животных (Исаева и др., 2001а, б;Чернышев и др., 2001), и более частный в плане изучения механизмов возникновения таких паттернов в онтогенезе А. aurita. Несмотря на обилие литературы по развитию Аурелии, этот аспект исследований ее онтогенеза оставался практически не затронутым.

На стадии метаэфиры и у самых мелких медуз (диаметром около 6 мм) перрадиальные и интеррадиальные каналы однотипно организованы и имеют характерную конфигурацию вилки-трезубца с одной центральной и двумя боковыми ветвями (рис.). Первичные боковые ветви (ветви первого порядка) мы обозначим как инициальные. Небольшие различия между каналами обусловлены характером первого ветвления: оно либо трихотомическое, либо поочередное.

Ветви второго порядка (второе ветвление) формируются главным образом за счет отрастания от кольцевого канала коротких и первоначально слепо заканчивающихся веточек (рис.), которые впоследствие соединяются с инициальными ветвями перрадиальных и интеррадиальных каналов. У изученной особи (рис.) формирование этих веточек происходит неравномерно: в трех каналах имеется по паре веточек, а в остальных – только по одной. От двух инициальных ветвей отходит по одной короткой внешней веточке, которая впоследствии должна соединиться с кольцевым каналом, формируя третье ветвление. От двух адрадиальных каналов в сторону интеррадиальных отходит по одной веточке. Поскольку в норме ветвящиеся и неветвящиеся каналы не соединяются, то можно предположить, что в данном случае мы также наблюдаем начальные этапы третьего ветвления и основание этих двух веточек в дальнейшем сместится к кольцевому каналу с возникновением паттерна ветвления, характерного для молодых медуз большего размера (рис. 3). Не исключено и появление аномалий гастроваскулярной системы: образование анастомозов неветвящихся адрадиальных каналов с ветвящимися, изредка и ветвление адрадиальных каналов, что иногда наблюдается на более поздних этапах онтогенеза (рис.)

У медузы диаметром 8 мм (рис.) все боковые ветви перрадиальных и интеррадиальных каналов имеют два однотипных ветвления (ветви второго и третьего порядка). Различия между каналами невелики и заключаются, прежде всего, в наличии либо отсутствии дополнительных терминальных ветвлений и анастомозов. Первое ветвление в 6 каналах выглядит как трихотомическое и лишь в двух - как поочередное. Инициальные ветви выделяются большим, чем у вторичных ветвей, диаметром (различия диаметра каналов на рис. 2 - 5 не показаны).

У медузы диаметром 15 мм (рис.) проявляется более выраженная неупорядоченность, главным образом в расположении терминальных веточек и анастомозов. Появляются единичные аномалии: одна из боковых веточек своим основанием присоединяется к адрадиальному каналу, хотя небольшой слепой отросток направлен и к интеррадиальному каналу. Трихотомия первого ветвления выражена только у трех каналов. Инициальные ветви еще хорошо отличаются от других ветвей чуть большим диаметром.

У медузы диаметром 20 мм (рис.) ветвление каналов приобретает сложность, сопоставимую с таковым у половозрелых медуз диаметром от 10 см и более. Инициальные ветви уже практически не отличаются от остальных. Два перрадиальных канала соединяются с адрадиальными, анастомозы отсутствуют только в двух каналах, характерно наличие зачаточных слепых веточек, что свидетельствует об интенсивном процессе формирования новых ветвей и анастомозов. Только в одном канале первое ветвление имеет вид трихотомии.

У половозрелых медуз диаметром от 10 до 24 см проявления неупорядоченности ветвлений и анастомозирования весьма разнообразны. Отличительной особенностью их организации является, прежде всего, исчезновение общего ствола в интеррадиальных каналах, в результате чего центральный канал и боковые ветви впадают обособленно в гастроциркулярный канал. Это связано с увеличением размеров желудочных карманов и поглощением базальной части впадающих в них каналов. При мощном развитии желудочных карманов возможно нарушение строения и перрадиальных каналов, когда боковые ветви "отрываются" от общего стволового канала и присоединяются к гастроциркулярным каналам.

Эфиры аурелий имеют примитивную пищеварительную систему с простыми радиальными каналами. В процессе метаморфоза эфиры A. aurita происходит дифференцировка радиальных каналов на 8 простых и 8 ветвящихся и формируется кольцевой канал; каждый из ветвящихся каналов при этом приобретает характерную форму трезубой вилки (Mayer, 1910; Kramp, 1942;Southward, 1955; Thiel, 1959), визуализируемую на фотографиях (рис. 1 а, б). Кольцевой канал возникает за счет соединения боковых отростков наружных частей всех радиальных каналов (Mayer, 1910; Kramp, 1942; Southward, 1955). В процессе развития другого вида, A. limbata, начальные этапы формирования гастроваскулярной системы протекают подобным же образом, тогда как дальнейшее усложнение системы каналов связано с образованием множественных анастомозов ветвей (Kramp, 1942; Uchida, Nagao, 1963). Молодые медузы A. aurita диаметром от 20 мм и более внешне становятся уже похожими на взрослых особей (Kramp, 1942; Southward, 1955).

Полученные нами данные наглядно показывают раннее формирование хаотических (нерегулярных, вариабельных) паттернов ветвления радиальных каналов. Одна из причин этого видится нам в асинхронном формировании веточек в разных каналах. Такая гетерохрония в сочетании с непрерывным и относительно быстрым увеличением диаметра зонтика, по-видимому, приводит к возникновению небольших поначалу различий в расположении ветвей второго и третьего порядка на ранних этапах развития медуз. Незначительное проявление неупорядоченности в развивающейся гастроваскулярной системе в дальнейшем должно усиливаться все той же асинхронностью (онтогенетической гетерохронией) и, кроме того, топографической вариабельностью (онтогенетической гетеротопией) закладки новых ветвей. По данным Крэмпа (Kramp, 1942), закладка новых ветвей происходит на кольцевом канале, а затем они соединяются с радиальными каналами. Именно поэтому, по мнению Крэмпа, не вполне корректно утверждение о ветвлении радиальных каналов. На рисунках, приведенных Крэмпом, заметна асинхронность образования новых ветвей, но нет свидетельств ранней топографической вариабельности. Нами выявлен второй, центробежный тип образования ветвей, при котором они отходят от радиальных каналов, образуя их ветви, растущие по направлению к кольцевому или другим радиальным каналам гастроваскулярной системы (рис. 2, 5). Таким образом, у Aurelia aurita обнаружено настоящее ветвление каналов гастроваскулярной системы в дополнение к более типичному для этой медузы отрастанию ветвей от кольцевого канала.

Нарастание числа ветвлений наиболее интенсивно протекает у медуз с радиусом зонтика менее 20 мм, хотя, судя по нашим и литературным (Kramp, 1942)данным, появление новых веточек происходит в течение всего роста медузы. Более того, Какинума с соавторами (Kakinuma et al., 1993) указывают, что число ветвлений в значительно меньшей степени подвержено влиянию внешних факторов, чем диаметр зонтика, и может служить показателем хронологического возраста A. aurita.

Формирование анастомозов у Aurelia aurita представляет особый феномен. По наблюдениям Крэмпа, анастомозы образуются путем слияния двух растущих ветвей, одна из которых берет начало от уже сформированной ветви. Другие способы анастомозирования им не обсуждаются, поскольку все новые каналы, по его данным, растут центростремительно. Хотя мы и не наблюдали динамику процесса анастомозирования, все же можно предположить более разнообразные способы слияния ветвей, растущих как центростремительно, так и центробежно. В отличие от A. limbata и ряда других видов сцифомедуз с обязательным образованием множественных анастомозов ветвящихся каналов, анастомозирование ветвей гастроваскулярных каналов A. aurita представляет нерегулярное явление. Как пишет Крэмп, у A. aurita из прибрежных вод Европы анастомозы редки или вообще отсутствуют, в то время как у особей из прибрежных вод Северной Америки и Гренландии анастомозы всегда многочисленны. У половозрелых A. aurita из залива Петра Великого анастомозы всегда присутствуют, но их количество значительно варьирует – от нескольких у одной медузы до двух-трех десятков в одном октанте.

Относительно быстрое формирование сложной ветвистой системы обусловлено физиологическими особенностями перрадиальных и интеррадиальных каналов, функционирующих подобно воронке: чем больше веточек этих каналов связано с кольцевым каналом, тем больше пищевых частиц может быть собрано и усвоено системой ветвящихся каналов. Упорядоченное расположение ветвей в таком случае не имеет адаптивного значения: каждый сектор зонтика ограничен от смежных областей адрадиальными каналами и заполняется ветвями канала гастроваскулярной системы с максимально возможной для каждого конкретного вида плотностью.

Сравнительно-анатомический анализ показывает, что эволюция сцифоидных медуз направлена в сторону увеличения плотности заполнения пространства каналами гастроваскулярной системы за счет появленияразнообразных способов образования новых ветвей и анастомозов. В гастроваскулярной системе A. limbata на ранних этапах развития было отмечено появление неупорядоченности (Kramp, 1942; Uchida, Nagao, 1963); в этом случае хаотизация ветвления каналов сочетается с множественным анастомозированием как эволюционным усложнением морфофункциональной организации ветвящихся каналов.

Важнейшей особенностью процесса образования ветвей каналов гастроваскулярной системы является его пластичность и динамичность в процессе всего онтогенеза. Большое разнообразие аномалий системы гастроваскулярных каналов не должно удивлять, если учесть, что по литературным данным A. aurita нередко имеют явные нарушения тетрарадиальной симметрии в виде большего (или меньшего), чем в норме, числа карманов желудка, ропалиев, числа радиальных каналов и гонад (Thiel, 1959; Gershwin, 1999). Отсутствие четкой детерминированности ветвлений позволяет сформировать нормально функционирующую гастроваскулярную систему при любом типе нарушений симметрии.

Необходимо отметить, что, согласно новейшим молекулярно-генетическим данным, род Aurelia представлен комплексом видов, причем A. aurita включает несколько скрытых видов-сиблингов (Dawson, Jacobs, 2001; Dawson, Martin, 2001). Один из видов комплекса Aurelia, A. labiata, судя по рисункам (Mayer, 1910), обладает значительно большей плотностью ветвлений, чем A. aurita s.l. из Японского моря. Не исключено, что исследование паттернов ветвления разных видов комплекса A. aurita также выявит видоспецифичные особенности. По крайней мере, описанные Крэмпом (Kramp, 1942) различия в строении гастроваскулярных каналов у "географических форм" хорошо согласуются с данными о видовой самостоятельности этих форм. Мы не исключаем, что наличие центробежно растущих ветвей у япономорских Aurelia "aurita" окажется в дальнейшем важным морфологическим критерием. Тем не менее можно предполагать сходный сценарий формирования квазифрактальной хаотической организации гастроваскулярных каналов у всех A. aurita s.l.

Как показано на клонах, полученных в результате стробиляции отдельных полипов, частота аномалий симметрии A. aurita определяется в значительной мере генетически, однако в клоне – потомке аберрантной медузы – исходно высокий (88,9 %) уровень нарушений симметрии по мере роста и развития медуз снизился до 29 %, т.е. в ходе онтогенеза произошла саморегуляция (Gershwin, 1999).

По-видимому, у A. aurita относительно жесткая генетическая детерминация паттерна гастроваскулярной системы осуществляется лишь на самых ранних этапах ее морфогенеза, когда программируется образование радиальных каналов - восьми неветвящихся, восьми ветвящихся каналов, их первое ветвление и развитие кольцевого канала. В ходе дальнейшего морфогенеза неупорядоченность и вариабельность ветвления каналов приводит к хаотизации паттернов, причем в структурной организации ветвящихся каналов весьма отчетливо выявляется граница между упорядоченностью и хаосом (Исаева и др., 2001 а). Нарастающая хаотизация ветвления каналов гастроваскулярной системы медузы - частное проявление универсального сценария перехода от порядка к хаосу с появлением случайных малых флуктуаций, умножающихся и усиливающихся в ходе фрактального морфогенеза (см. Глейк, 2001; Шредер, 2001).

Мы полагаем, что отсутствие жесткого генетического контроля паттерна каналов гастроваскулярной системы обеспечивает пластичность этой системы и возможность ее адаптивных реакций, например, при нарушениях тетрарадиальной симметрии или перестройках после повреждения.

Таким образом, лишь первое ветвление перрадиальных и интеррадиальных каналов гастроваскулярной системы Aurelia aurita (L.) (Scyphozoa: Ulmaridae) на стадии метаэфиры всегда единообразно. Дальнейшее образование ветвей оказывается вариабельным и неупорядоченным. Новые ветви чаще берут начало от кольцевого канала, но некоторые отрастают от радиальных каналов. Раннее формирование нерегулярных, хаотических паттернов ветвления радиальных каналов обусловлено асинхронностью и топографической вариабельностью закладки новых ветвей разных каналов. В ходе дальнейшего морфогенеза пространственно-временная вариабельность ветвления усиливается, что ведет и к нарастающей хаотизации морфологии ветвящихся каналов каждой особи. Отсутствие жесткой детерминированности ветвления каналов гастро-васкулярной системы, пластичность этой системы в ходе всего онтогенеза, по-видимому, обеспечивает возможность ее адаптивных реакций, например, при нарушениях тетрарадиальной симметрии или перестройках после повреждения.





Дата публикования: 2014-11-29; Прочитано: 657 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...