Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Доказательство и опровержение



Невозможно переоценить значение доказательств в нашей жизни и, особенно, в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. Иногда за доказательство выдается то, что им вовсе не является. К доказательствам прибегают все, но редко кто задумывается над тем, что означает "доказать", почему доказательство "доказывает", всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем — чаще всего незаметно для себя — общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т. д. Особую роль при этом играет изучение математики. С незапамятных времен математические рассуждения считаются общепризнанным эталоном доказательности. Желая похвалить чью-либо аргументацию, мы называем ее математически строгой и безупречной.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя ее детализация требует специального символического языка и другой изощренной техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства. В обычной практике мы редко формулируем все используемые посылки и, в сущности, никогда не обращаем внимания на применяемые нами правила логики.

Одна из основных задач логики состоит в придании точного значения понятию доказательства. Но хотя это понятие является едва ли не главным в логике, оно не имеет точного, строго универсального определения, применимого во всех случаях и в любых научных теориях. "Понятие доказательства,— пишет отечественный логик и математик В. А. Успенский,—

Жирным шрифтом выделены новые понятия, которые необходимо усвоить. Знание этих понятий будет проверяться при тестировании.

во всей его полноте принадлежит математике не более, чем ш и- 1и: ведь доказательство — это просто рассуждение, убеждающее нас н.п I >о, что с его помощью мы готовы убеждать других".

Доказательство — один из многих способов убеждении И науке это один из основных методов. Можно сказать, что научный мшод убеждения является прежде всего методом строгих и точных доказательств Требование доказательности научного рассуждения определяет то "общее оснащение", которое модифицирует попавшие в сферу его действия цвета. Этим "общим освещением" пронизываются все другие требования к научной аргументации. Без него она неизбежно вырождается в бездоказательный набор общих деклараций и поучений, в апелляцию к вере и эмоциям.

На каждом из нас лежит "бремя доказательства" выдвигаемых положений. Важно постоянно думать о содержательной стороне дела. Вместе с тем существенно также, чтобы всегда обеспечивалось единство содержательности и доказательности. Никакие искусственные приемы, никакое красноречие не способны помочь, если нет хорошо обоснованных идей и убедительных до­казательств.

Задача доказательства — исчерпывающе утвердить обоснованность доказываемого тезиса.

Раз в доказательстве речь идет о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер. По своей форме доказательство — дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.

Старая латинская пословица говорит: "Доказательства ценятся по качеству, а не по количеству". В самом деле, дедукция из истины дает только истину. Если найдены верные аргументы и из них дедуктивно выведено доказываемое положение, доказательство состоялось, и ничего более не требуется.

Нередко в понятие доказательства вкладывается более широкий смысл. При этом под доказательством понимается любая процедура обоснования истинности тезиса, включающая как дедукцию, так и индуктивное рассуждение, ссылки на связь доказываемого положения с фактами, наблюдениями и т. д. Расширительное истолкование доказательства является обычным в гуманитарных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения, рассуждениях.

Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определенном отношении явления и т. п. Дедукции в этом случае, конечно, нет, речь может идти только об индукции. Но тем не менее предлагаемое обоснование нередко называют доказательством.

Широкое употребление понятия "доказательство" само по себе не ведет к недоразумениям. Но только при одном условии. Нужно постоянно иметь в виду, что индуктивное обобщение, переход от частных фактов к общим заключениям дает не достоверное, а лишь вероятное знание.

Многие наши утверждения не являются ни истинными, ни ложг I. Оценки, правила, советы, требования, предостережения не опись г рассматриваемую ситуацию. Они указывают, какой она должна стать, и м направлении ее надо преобразовать. От описаний мы вправе требовать, • м они являлись истинными. Но удачный приказ, совет и т. д. мы характщм м как эффективный, целесообразный, но не как истинный.

В стандартном определении доказательства используемой т и истины. Доказать некоторый тезис — значит логически вывести то и и и

являющихся истинными положений. Но есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, можно и нужно быть и логичным, и доказательным.

Встает, таким образом, вопрос о существенном расширении понятия доказательства. Им должны охватываться не только описания, но и утверждения типа оценок, требований.

Задача переопределения доказательства успешно решается современной логикой. Такие ее разделы, как логика оценок и логика норм, убедительно показывают, что рассуждения о ценностях и нормах также подчиняются требованиям логики и не выходят за сферу логического.

1.1. Различие и деление доказательств

Обычно доказательство слагается из серии шагов. Нужно уметь проследить каждый шаг доказательства, иначе его части лишатся связи, и оно в любой момент может рассыпаться, как карточный домик. Но не менее важно понять доказательство в целом, как единую конструкцию, каждая часть которой необходима на своем месте.

Доказательство, не понятое как целое, ни в чем не убеждает. Даже если выучить его наизусть, предложение за предложением, к имеющемуся знанию предмета это ничего не прибавит. Следить за доказательством и лишь убеждаться в правильности каждого его последующего шага — это равносильно такому наблюдению за игрой в шахматы, когда замечаешь только то, что каждый ход подчинен правилам игры.

Минимальное требование — это понимание логического выведения как целенаправленной процедуры. Только в этом случае достигается интуитивная ясность того, что мы делаем.

То, что создает "единство доказательства", можно представить в форме общей схемы, охватывающей основные его шаги, воплощающей в себе его принцип или его итоговую структуру. Именно такая схема остается в памяти, когда забываются подробности доказательства.

С точки зрения общего движения мысли, все доказательства подразделяются на прямые и косвенные. При прямом доказательстве задача состоит в том, чтобы подыскать такие убедительные аргументы, из которых по логическим правилам получается тезис.

Например, нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360*.

В построении прямого доказательства можно выделить два связанных между собой этапа: отыскание тех признанных обоснованными утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом. Нередко первый этап считается подготовительным, и под доказа­тельством понимается дедукция, связывающая подобранные аргументы и доказываемый тезис.

Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения (антитезиса).

Как с иронией замечает математик Д. Пойа, "косвенное доказательство имеет некоторое сходство с надувательским приемом политикана, поддерживающего своего кандидата тем, что опорочивает репутацию кандидата другой партии". В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того чтобы прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от

противного.

Допустим, нужно построить косвенное доказательство такого весьма тривиального тезиса: "Квадрат не является окружностью". Выдвигается антитезис: "Квадрат есть окружность". Необходимо доказать ложность этого утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у квадрата нет углов. Поскольку антитезис ложен, исходный тезис должен быть истинным.

Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуж­дает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т.п. Но ничего подобного нет. Значит, нет и гриппа. Это опять-таки косвенное доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что у пациента в самом деле грипп. Из антитезиса выводятся следствия, но они опровергаются объективными данными. Это говорит, что допущение о гриппе неверно. Отсюда следует, что тезис "Гриппа нет" истинен.

Доказательства от противного обычны в наших рассуждениях, особенно в споре. При умелом применении они могут обладать особенной

убедительностью.

Ход мысли в косвенном доказательстве определяется тем, что вместо обоснования справедливости тезиса стремятся показать несостоятельность его отрицания. В зависимости от того, как решается последняя задача, можно выделить несколько разновидностей косвенного доказательства.

Чаще всего ложность антитезиса удается установить простым сопоставлением вытекающих из него следствий с фактами. Так обстояло дело, в частности, в примере с гриппом.

Друг изобретателя паровой машины Д. Уатта, шотландский ученый Д. Блэк, ввел понятие о скрытой теплоте плавления и испарения, важное для понимания работы такой машины. Блэк, наблюдая обычное явление — таяние снега в конце зимы, рассуждал так. Если бы снег, скопившийся за зиму, таял сразу, как только температура воздуха стала выше нуля, то неизбежны были бы опустошительные наводнения. А раз этого не происходит, значит, на таяние снега должно быть затрачено определенное количество теплоты. Ее Блэк и

назвал скрытой.

Это — косвенное доказательство. Следствие антитезиса, а значит, и он сам опровергаются ссылкой на очевидное обстоятельство: в конце зимы наводнений обычно нет, снег тает постепенно.

Философ Р. Декарт утверждал, что животные не способны рассуждать. Его последователь Л. Расин, сын великого французского драматурга, воспользовался для обоснования этой идеи доказательством от противного. Если бы животные обладали душой и способностью чувствовать и рассуждать, говорил он, разве бы они остались безразличными к несправедливому публичному оскорблению, нанесенному им Декартом? Разве они не восстали бы в гневе против того, кто так принизил их? Но никаких свидетельств особой обиды животных на Декарта нет. Следовательно, они просто не в состоянии обдумать его аргументацию и как-то ответить на нее.

По логическому закону противоречия одно из двух противоречащих друг другу утверждений является ложным. Поэтому, если в числе следствий какого-либо положения встретились и утверждение, и отрицание одного и того же, можно сразу сказать, что это положение ложно.

Например, положение "Квадрат—это окружность" ложно, поскольку из него выводится как то, что квадрат имеет углы, так и то, что у него нет углов.

Ложным будет также положение, из которого выводится внутренне противоречивое высказывание или высказывание о тождестве утверждения и отрицания.

Один из приемов косвенного доказательства — выведение из антитезиса логического противоречия. Если антитезис содержит противоречие, он явно ошибочен. Тогда его отрицание — тезис доказательства — верно.

Схема косвенного доказательства выражается логическим законом косвенного доказательства:

{~а->Ь)&(~а-^Ь) —>а,

"если не-а имплицирует Ь и не-а имплицирует также не-Ь, то верным является а", или в другой форме:

(~ а—>Ь & ~ Ь) —>а,

"если не-а имплицирует логическое противоречие, то верно а".

Хорошим примером косвенного доказательства служит известное доказательство Евклида, что ряд простых чисел бесконечен.

Простые — это натуральные числа больше единицы, делящиеся только на себя и на единицу. Простые числа — это как бы "первичные элементы", на которые все целые числа (больше 1) могут быть разложены. Естественно предположить, что ряд простых чисел: 2, 3, 5, 7, 11, 13,... бесконечен. Для доказательства данного тезиса допустим, что это не так, и посмотрим, к чему ведет такое допущение. Если ряд простых чисел конечен, существует последнее простое число ряда—Л. Образуем, далее, другое число: В=(2хЗх5х...хЛ)+1. Число В больше А, поэтому 8 не может быть простым числом. Значит, В должно делиться на простое число. Но если В разделить на любое из чисел 2, 3, 5,..., А, то в остатке получится 1. Следовательно, В не делится ни на одно из указанных простых чисел и является, таким образом, простым. В итоге, исходя из предположения, что существует последнее простое число, мы пришли к противоречию: существует число одновременно и простое, и не являющееся простым. Это означает, что сделанное предположение ложно и правильно противоположное утверждение: ряд простых чисел бесконечен.

В этом косвенном доказательстве из антитезиса выводится логическое противоречие, что прямо говорит о ложности антитезиса и, соответственно, об истинности тезиса. Такого рода доказательства широко используются в математике.

Если имеется в виду только та часть подобных док тв, в которой

показывается ошибочность какого-либо предположени минуются по

традиции приведением к абсурду. Ошибочность предпо рывается

тем, что из него выводится абсурд, т. е. логическое пр(......,

Имеется еще одна разновидность косвенного доказан ни. <л и I да прямо не приходится искать ложные следствия. Дело в том, что дли;и ■> ательства утверждения достаточно показать, что оно логически иитк;км из своего собственного отрицания. Этот прием опирается на логический макон Клавия.

К примеру, если из допущения, что дважды два раимо пят, выведено, что это не так, тем самым доказано, что дважды два не равняется пяти.

По такой схеме рассуждал еще Евклид в своей "Геометрии". Эту же схему использовал однажды древнегреческий философ Демокрит в споро с другим древнегреческим философом, софистом Протагором. Протагор утверждал, что истинно все то, что кому-либо приходит в голову. На это Демокрит ответил, что из положения "Каждое высказывание истинно" вытекает истинность и его отрицания "Не все высказывания истинны". И, значит, это отрицание, а не положение Протагора на самом деле истинно.

Во всех рассмотренных косвенных доказательствах выдвигаются две альтернативы: тезис и антитезис. Затем показывается ложность последнего, в итоге остается только тезис.

Можно не ограничивать число принимаемых во внимание возможностей только двумя. Это приведет к так называемому разделительному косвенному доказательству, или доказательству через исключение. Оно применяется в тех случаях, когда известно, что доказываемый тезис входит в число альтернатив, полностью исчерпывающих все возможные альтернативы данной области.

Например, нужно доказать, что одна величина равна другой. Ясно, что возможны только три варианта: или две величины равны, или первая больше второй, или, наконец, вторая больше первой. Если удалось показать, что ни одна из величин не превосходит другую, два варианта будут отброшены и останется только третий: величины равны.

Доказательство идет по простой схеме: одна за другой исключаются все возможности, кроме одной, которая и является доказываемым тезисом. Символически:

(а у Ь V с) & ~ а& ~ Ь —> с,

"имеет место или а, или Ь, или с, но неверно, что а, и неверно, что Ь, значит, с".

В стандартных косвенных доказательствах альтернативы — тезис и антитезис — исключают друг друга в силу законов логики. В разделительном доказательстве взаимная несовместимость возможностей и то, что ими исчерпываются все мыслимые альтернативы, определяются не логическими, а фактическими обстоятельствами. Отсюда обычная ошибка разделительных доказательств: рассматриваются не все возможности.

С помощью разделительного доказательства можно попытаться, например, показать, что в Солнечной системе жизнь есть только на Земле. В качестве возможных альтернатив выдвинем утверждения, что жизнь есть на Меркурии, Венере, Земле и т. д., перечисляя все планеты Солнечной системы. Опровергая затем все альтернативы, кроме одной — говорящей о наличии жизни на Земле, получим доказательство исходного утверждения.

Нужно заметить, что в ходе доказательства рассматриваются и опровергаются допущения о существовании жизни на других планетах. Вопрос о том, есть ли жизнь на Земле, вообще не поднимается. Ответ получается косвенным образом: путем показа того, что ни на одной другой планете нет жизни. Это доказательство оказалось бы, конечно, несостоятельным, если бы, допустим, выяснилось, что, хотя ни на одной планете, кроме Земли, жизни нет, живые существа имеются на одной из комет или на одной из так называемых малых планет, тоже входящих в состав Солнечной системы.

Заканчивая разговор о косвенных доказательствах, обратим внимание на их своеобразие, ограничивающее в известной мере их применимость.

Нет сомнения, что косвенное доказательство представляет собой эффективное средство обоснования. Но, имея с ним дело, мы вынуждены все время сосредоточиваться не на верном положении, справедливость которого необходимо обосновать, а на ошибочных утверждениях. Сам ход доказательства состоит в том, что из антитезиса, являющегося ложным, мы выводим следствия до тех пор, пока не придем к утверждению, ошибочность которого несомненна.

Косвенное доказательство — хорошее орудие исследования, но оно не всегда удачный прием изложения материала. Не случайно в практике преподавания нередок такой парадоксальный совет: после того, как косвенное доказательство проведено, ход его полезно тут же забыть, оставив в памяти только доказанное положение.

Имеются также более серьезные возражения против косвенного доказательства. Они связаны с использованием в нем закона исключенного третьего. Как уже говорилось, не всеми он признается универсальным, приложимым в любых без исключения случаях.

Можно отметить, что найденное косвенное доказательство какого-то утверждения обычно удается перестроить в прямое доказательство этого же утверждения. Обычно, но не всегда.





Дата публикования: 2014-11-29; Прочитано: 716 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...