Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Модуль 2. 3 страница



Гипотеза образования Земли и планет в быстро вращающейся протосолнечной небуле разработана японскими исследователями на основе представлений об аккумуляции твердых тел и частиц (силикатных и металлических). Согласно этой гипотезе, в течение всего периода формирования Земля оставалась окруженной протосолнечной небулой (туманностью). В результате гравитационного притяжения вокруг нее возникла флюидная оболочка (в 200 раз массивнее современной атмосферы), препятствующая потере аккреционного тепла. Температура достигла значений (более 4000 К), достаточных для расплавления, что определило расслоение Земли на оболочки. После этого флюидная оболочка Земли была удалена под воздействием солнечного ветра, ультрафиолетового и теплового излучения Солнца.

Положение Земли в пространстве, физические поля, строение поверхности, форма и размеры небесного тела оказывают существенное влияние на ее взаимодействие с Космосом, однако и Космос оказывает свое воздействие на Землю.

Солнечно-земные связи. Генеральная схема солнечно-земных связей включает электромагнитное и корпускулярное излучения (рис. 3.7), которые обусловливают ряд процессов и явлений во всех геосферах (например, полярные сияния, магнитные бури и связанные с ними последствия). Активность Солнца различна, выделяют периоды, когда в результате происходящих на Солнце процессов наша планета получает дополнительное (по сравнению с излучением Солнца в спокойном состоянии) излучение, которое влияет на характер многих земных процессов.

Под солнечной активностью обычно понимают совокупность всех физических и энергетических изменений, происходящих на Солнце и вызывающих на нем видимые образования: пятна и факелы в фотосфере, флоккулы и вспышки в хромосфере, протуберанцы в короне.

Солнечная вспышка — взрывообразное высвобождение большого количества энергии, происходящее обычно вблизи больших групп солнечных пятен. Вспышка сопровождается резким возрастанием яркости излучения во всех диапазонах волн, а также выбросом плазменных частиц, которые воздействуют на межпланетную среду и планеты.

Рис. 3.7. Схема солнечно-земных связей (по Л.И.Мирошниченко, 1981)

Более 350 лет назад, сразу же после открытия телескопа, было обнаружено, что на ослепительно ярком диске Солнца время от времени появляются пятна. В последующем было установлено, что температура в области пятен на 1000—1500 К ниже температуры поверхности Солнца, вследствие чего они кажутся относительно темными и хорошо заметны на фотосфере. Продолжительность существования солнечных пятен различна и колеблется от нескольких часов до месяцев. Размеры пятен также непостоянны и изменяются от нескольких сотен до десятков и сотен тысяч километров в поперечнике. Пятна концентрируются главным образом в широтных зонах от 5° до 35-40° каждого полушария Солнца и отсутствуют в полярных и экваториальных областях.

Согласно одной из гипотез, более низкие температуры в области расположения солнечных пятен связаны с процессами неравномерного конвективного перемешивания основных солнечных газов — водорода и гелия, в результате чего конвективный поток, подойдя к фотосфере, имеет более низкую температуру, чем окружающие его участки. По другим представлениям, более низкая по сравнению с фотосферой температура в области солнечного пятна обусловлена тем, что часть тепловой энергии пятна превращается в энергию его магнитного поля.

Для количественной характеристики солнечной активности используют разные числовые показатели, установленные в основном эмпирическим путем. Среди них — число (индекс) Вольфа, которое вычисляется по формуле

где k — коэффициент, зависящий от условий наблюдений и вида инструмента; g — число групп и отдельных пятен; f — общее число всех пятен (в группах и отдельных пятен).

Из формулы видно, что индекс Вольфа — суммарный показатель, который характеризует пятнообразовательную деятельность Солнца, но не учитывает качественную сторону солнечной активности — мощность пятен и их устойчивость во времени.

В 1843 г. астрономом Г. Швабе было установлено, что все элементы солнечной активности претерпевают многолетние изменения, явно обнаруживая цикличность. Обстоятельные исследования были проделаны Вольфом, который установил, что средняя продолжительность цикла колебаний числа солнечных пятен близка к 11 годам. Исходя из непосредственных наблюдений, ученые определяют число солнечных пятен ежедневно, ежемесячно и ежегодно. Таким образом рассчитывают годы максимума и минимума солнечной активности, что удобно иллюстрировать с помощью графика (рис. 3.8). Максимальный уровень солнечной активности был зарегистрирован в 1957 г.

Рис. 3.8. Колебания солнечной активности (чисел Вольфа W) за период с 1950 по 2000 г. (по Н.С.Сидоренкову, 2002)

Очевидно, что 11-летний цикл не является единственным среди колебаний солнечной активности и правильнее выделять 22-летний, состоящий из двух 11-летних циклов разного знака (четный и нечетный). В свою очередь, допускают существование 44-летнего цикла. В деятельности Солнца отмечена цикличность и более крупного масштаба, прежде всего 80 —90-летний цикл, который имеет важное значение для объяснения многолетних колебаний общей циркуляции атмосферы (иногда его причисляют к вековым ритмам).

Солнечная активность — фактор, влияющий на многие процессы в географической оболочке. Первыми встречают солнечную радиацию верхние слои земной атмосферы. Нарушения в ионосфере, возникающие в периоды повышения солнечной активности, отражаются на характере атмосферных процессов в этом слое и вызывают соответствующие изменения в стратосфере и тропосфере, а также в других оболочках планеты.

Движения Земли. Земля совершает множество движений одновременно. В географии принято учитывать орбитальное и суточное вращения, движение системы Земля — Луна, изменение скорости вращения Земли, а также колебания оси вращения.

Орбитальное движение. Вокруг Солнца Земля движется по эллиптической орбите, в одном из фокусов которой расположено Солнце. Скорость орбитального движения равна 29,765 км/с, период обращения — год (365,26 средних солнечных суток). Скорость движения Земли по орбите тем выше, чем меньше радиус — вектор (расстояние от Земли до Солнца). Расстояние между Землей и Солнцем в течение года меняется незначительно: в перигелии оно уменьшается до 147,117 млн км, в афелии увеличивается до 152,083 млн км (рис. 3.9). В перигелии Земля бывает в начале января, следовательно, ее движение по орбите происходит быстрее, поэтому зимнее полугодие в Северном полушарии короче, чем в Южном.

Земная ось наклонена по отношению к плоскости орбиты под углом 66°33'. В процессе движения ось перемещается поступательно, поэтому на орбите возникают четыре характерные точки: два равноденствия и два солнцестояния. В дни равноденствий радиус-вектор находится в плоскости экватора, а светораздельная линия делит все параллели пополам. Благодаря этому солнечные лучи на экваторе в полдень падают отвесно и на всем земном шаре день равен ночи (на полюсах происходит смена дня и ночи). Различают весеннее (21 марта) и осеннее равноденствия (23 сентября). В дни солнцестояний плоскость экватора наклонена по отношению к солнечному лучу (и радиус-вектору орбиты) под углом 23°27'. Солнце в этот момент находится в зените над одним из тропиков. Различают летнее (22 июня) и зимнее (22 декабря) солнцестояния.

С наклоном земной оси к плоскости орбиты связано наличие таких характерных параллелей, как тропики и полярные круги.

Рис. 3.9. Орбитальное движение Земли вокруг Солнца

Угол наклона земной оси к эклиптике колеблется в интервале 22°07'—24°57'; в современную эпоху (по определению 1900 г.) он составляет 23°27'08". Линия пересечения плоскости экватора с плоскостью эклиптики, на которой лежат точки равноденствий, перемешается навстречу движению Земли по орбите, благодаря чему тропический год короче сидерического (солнечного). Земная ось совершает движения в теле Земли, описывая конус. Время, за которое земная ось описывает полный конус, называется прецессионным ритмом (25 735 тропических лет). От наклона плоскости экватора к эклиптике зависит поступление солнечной радиации на разные широты (чем больше угол, тем выше выраженность сезонов).

Суточное вращение Земли происходит вокруг оси, которая в силу гироскопического эффекта стремится сохранить постоянное положение в пространстве. Вращение Земли осуществляется равномерно, однако скорость вращения испытывает флуктуации. Отрезок времени между последовательными прохождениями плоскости меридиана данной точки через центр Солнца называют солнечными сутками. Земля вращается против часовой стрелки, если смотреть с северного полюса (Солнце восходит на востоке и заходит на западе). Ось вращения, полюсы и экватор являются основой географической системы координат.

Географические следствия суточного вращения Земли:

смена дня и ночи — изменение в течение суток положения Солнца относительно плоскости горизонта данной точки;

деформация фигуры Земли — сплюснутость с полюсов (полярное сжатие), связанная с возрастанием центробежной силы от полюсов к экватору;

существование силы Кориолиса, действующей на движущиеся тела (чем больше угловая скорость вращения Земли, тем больше сила Кориолиса);

суперпозиция центробежной силы и силы тяготения, дающая силу тяжести. Центробежная сила растет от нуля на полюсах до максимального значения на экваторе. В соответствии с уменьшением центробежной силы от экватора к полюсу, сила тяжести увеличивается в том же направлении и достигает максимума на полюсе (где она равна силе тяготения).

Движение системы Земля—Луна. Луна создает приливное торможение суточного вращения нашей планеты, которое имеет большое географическое значение, если рассматривать длительные (в сотни миллионов лет) отрезки геологического времени. Приливное торможение, вызывая замедление вращения, уменьшает полярную сплюснутость Земли и силу Кориолиса, отклоняющую движущиеся массы воздуха и воды, т. е. влияет на циркуляцию атмосферы и океаносферы, от чего в свою очередь зависят условия климата. Полагают, что из-за замедления суточного вращения Земли продолжительность суток за последний 1 млрд лет возросла на 6 ч. С удлинением суток за счет действия приливного трения сила Кориолиса уменьшается, однако этот фактор важен только в вековом аспекте, так как для небольших отрезков времени угловая скорость принимается постоянной.

Полагают, что взаимодействие Земли и Луны могло быть одним из возможных факторов первичного разогрева планеты, при условии, что Луна первоначально была существенно ближе к Земле. Если считать, что расстояние между Луной и Землей первоначально могло быть в 10 раз меньше современного, то тогда приливная волна была бы в 100 раз интенсивнее. Поскольку приливная волна создает в теле Земли и Мировом океане внутреннее трение, происходит выделение энергии, которой вполне достаточно для расплавления Земли.

Изменения скорости вращения Земли. Неравномерность суточного вращения Земли принято характеризовать безразмерной величиной — среднемесячным отклонением (δр):

где Т — длительность земных суток; П — длительность атомных суток, равная 86 400 с; ω = 2π/Т и Ω = 2π/П — угловые скорости, соответствующие земным и атомным суткам.

По данным наблюдений за Луной, Солнцем и планетами, изменения скорости вращения Земли известны с XVII столетия (точность этого временного ряда очень низкая). В 1955 г. были введены атомные часы, что позволило вычислять значения (Т-П) с большей точностью.

Рис. 3.10. Среднемесячные отклонения длительности земных суток от эталонных за период 1955 — 2000 гг. (по Н. С. Сидоренкову, 2002)

Анализ многолетних колебаний различных характеристик выявил наличие в их изменении периодов, что является следствием существования соответствующего периода в изменении скорости вращения Земли. Ход среднемесячных значений δр во времени иллюстрирует рис. 3.10. Очевидно, что с 1956 по 1961 г. вращение Земли ускорялось, с 1961 по 1972 г. замедлялось и с 1973 по 1988 г. снова ускорялось. Ускорение, начавшееся в 1973 г., вероятно, продлится (несмотря на некоторое заметное замедление скорости вращения в 1989 и 1990 гг.) до 2005-2010 гг.

Рис. 3.11. Схема движения оси вращения Земли в пространстве (по Н. С. Сидоренкову)

Движение полюсов Земли. В 1765 г. Л. Эйлер теоретически доказал, что если ось вращения не совпадает с осью фигуры Земли, то должно происходить движение географических полюсов вокруг полюсов фигуры с периодом 305 звездных суток. В 1891 г. А.Чанд-лер опубликовал результаты, из которых следовало, что такой период существует, но его продолжительность составляет 428 суток. Оказалось, что период в 305 суток характерен для абсолютно твердой Земли. Поскольку этого нет, то упругие деформации Земли вызывают увеличение периода с 10 до 14 месяцев. Так как океаны и материки расположены несимметрично относительно оси вращения Земли, должно происходить непрерывное изменение момента инерции соответствующих масс относительно оси вращения. Из законов механики известно, что такого рода система не может вращаться совершенно спокойно. Если бы ось Земли, подобно маховому колесу, лежала в неподвижных подшипниках, возникли бы «биения» такого маховика. Для земного шара, вращающегося без всяких неподвижных подшипников, законы механики требуют непрерывного смещения самой оси вращения внутри тела Земли — прецессии, а следовательно, и перемещения — нутации полюсов в пространстве. Эти процессы показаны на рис. 3.11—3.12.

Рис. 3.12. Траектория движения полюса за период с 1996 по 2000 г. (по Н.С.Сидоренкову, 2002). Сплошная линия — траектория среднего положения полюса за период с 1890 по 2000 г.

Нутация полюсов имеет важное географическое следствие, поскольку с ней связаны многие процессы. По исследованиям В. В. Шулейкина, вследствие нутации полюсов происходит перераспределение масс воздуха при смене сезонов. Аналогичные явления обнаружены и в океаносфере: смещения полюсов Земли через изменения центробежной силы приводят к деформации водной поверхности и обусловливают соответствующие изменения наклона уровня Мирового океана, интенсивность океанических течений, характер взаимодействия между океаном и атмосферой и, как следствие, изменения атмосферной циркуляции. Этот взаимосвязанный механизм существует непрерывно и, видимо, играет важную роль в формировании климата нашей планеты.

Модуль 2.

Заняття № ___.

Місце системи введення-виводу складі обчислювальної системи і її структура. Особливості реалізації інтерфейсів.| (4 год)

План:

1. Функції системи вводу-виводу (СВВ). Поняття СВВ. Загальна структура СВВ. Класифікація СВВ.

2. Центрально-синхронний та паралельно-асинхронний принципи керування.

3. Канал вводу-виводу. Основні функції та характеристики каналу вводу-виводу. Типи каналів вводу-виводу.

4. Поняття інтерфейсу та його характеристики.

5. Вибір шин по їх класифікації технічним характеристикам взаємозв'язку.

6. Стандарти системних інтерфейсів.

7. Стандарти локальних інтерфейсів.

8. Інтерфейс малих обчислювальних систем SCSI|. Інтерфейс IDE|.

С точки зрения физического рассмотрения вопроса структуры СВВ существует много разнообразных устройств, которые могут взаимодействовать с процессором и памятью: таймер, жесткие диски, клавиатура, дисплеи, мышь, модемы и т. д. Часть этих устройств может быть встроена внутрь корпуса компьютера, часть – вынесена за его пределы и общаться с компьютером через различные линии связи: кабельные, оптоволоконные, радиорелейные, спутниковые и т. д. Конкретный набор устройств и способы их подключения определяются целями функционирования вычислительной системы, желаниями и финансовыми возможностями пользователя. Несмотря на все многообразие устройств, управление их работой и обмен информацией с ними строятся на относительно небольшом наборе принципов. Мы будем рассматривать только принципы взаимодействия ПУ.

Основные принципы взаимодействия ПУ с вычислительной системой:

1. ПУ подключаются к системной шине (СШ) через цепочку «адаптер ПУ (АПУ)—порт ввода-вывода (ПВВ)».

2. АПУ (контроллер) выполняет две основные функции: 1) осуществляет непосредственное управление ПУ по запросам от МП; 2) обеспечивает согласование интерфейса ПУ с СШ.

3. ПВВ обеспечивает непосредственное подключение АПУ к СШ. Каждый ПВВ имеет свой адрес, аналогичный адресу в ОЗУ, но содержащийся в другом адресном пространстве. Одному ПУ может быть приписано несколько ПВВ. Каждое стандартное ПУ закреплено за ПВВ с определённым адресом.

4. Адаптеры интерфейсов (АИ), либо просто интерфейсы, выполняют роль согласующих звеньев для сопряжения центральной части ЭВМ с ПУ, интерфейсы которых стандартизированы. Примеры: параллельный интерфейс Centronics, последовательный интерфейс RS232C.

Задача СВВ состоит в организации и управлении процессом передачи информации от ПУ в ОЗУ машины при вводе и в обратном направлении при выводе, т. е. выполнении операций ввода-вывода.

Основные функции СВВ:

– преобразование квантов информации, принимаемых от ПУ при вводе, в форматы МП и ОП; обратное преобразование;

– определение места в ОП, где должен быть размещён сформированный машинный квант при вводе и откуда должен быть выбран при выводе, т. е. формирование текущего адреса ОП;

– формирование управляющих сигналов для работы ПУ в различных режимах, задание типа выполняемой операции в ПУ и т. д.;

– получение и обработка сигналов, характеризующих состояние ПУ;

– получение приказов от центральных устройств на выполнение операций ввода-вывода, формирование сообщений о состоянии СВВ;

– синхронизация процессов центральных устройств и ПУ, согласование скоростей их работы.

Простейшая реализация перечисленных функций возможна при центрально-синхронном принципе управления. При этом синхронизация всех устройств ЭВМ осуществляется от единого центрального устройства управления, а все передачи данных от ПУ или к нему производятся через АЛУ. В этом случае все операции обработки и ввода-вывода должны выполняться последовательно.

Чтобы избежать потерь времени, должен быть реализован асинхронный принцип управления, обеспечивающий независимость работы ПУ, ОЗУ и АЛУ.

Для организации совмещения операций обработки и ввода-вывода информации при асинхронном принципе управлении применяются следующие основные средства: приостановки и прерывания. Эти средства обеспечивают возможность взаимодействия асинхронно протекающих процессов. Приостановка — процесс, при котором средства управления, работающие автономно от ЦП, задерживают его работу на время цикла памяти, при этом ОЗУ непосредственно занято приёмом или выдачей информации для другого устройства. Во время приостановок текущее состояние процессора не меняется, но выполнение команды задерживается до освобождения ОЗУ.

Приостановки обеспечивают высокую степень совмещения операций обработки и ввода-вывода, которая тем выше, чем меньше длительность цикла памяти относительно длительности команды процессора.

Прерывание — процесс переключения ЦП с одной программы на другую по внешнему сигналу с сохранением информации для последующего возобновления прерванной программы. Необходимость в прерывании возникает в том случае, если некоторое внешнее по отношению к ЦП событие требует от него немедленной реакции. Процесс прерывания: ПУ при возникновении события, требующего реакции со стороны ЦП, формирует сигнал, называемый запросом прерывания. Он может поступать в ЦП в произвольные моменты времени асинхронно по отношению к выполнению программы, поэтому запросы прерываний запоминаются в регистре запросов прерываний. Обработка прерывания включает в себя этапы запоминания состояния прерываемой программы и перехода к выполнению прерывающей программы; выполнения прерывающей программы; восстановления состояния прерванной программы и возврата к её выполнению.

КВВ представляет собой совокупность аппаратных и программных средств, предназначенных для организации, управления обменом и непосредственной передачи данных между ОП и ПУ. КВВ образует маршрут передачи данных между ОП и ПУ и осуществляет управление обменом, начиная от установления связи и кончая завершением передачи и разрушением установленной связи.

Основные функции КВВ можно разделить на три группы: 1) функции по установлению логической связи между ПУ и ОП, т. е. образование «канала» для передачи данных; 2) функции передачи данных между ПУ и ОП; 3) функции завершения обмена и разрушения «канала».

Эти функции КВВ реализуются различными сочетаниями аппаратных и программных средств. Выделяют два способа реализации — программный КВВ и прямой доступ к памяти.

В простейшем случае процессор, память и многочисленные внешние устройства связаны большим количеством электрических соединений - линий, которые в совокупности принято называть локальной магистралью компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себе не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют, как минимум, три шины:

1. Шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами.

2. Адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией.

3. Шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии состояния выносятся из этой шины в отдельную шину состояния.

Количество линий, входящих в состав шины, принято называть разрядностью (шириной) этой шины. Ширина адресной шины, например, определяет максимальный размер оперативной памяти, которая может быть установлена в вычислительной системе. Ширина шины данных определяет максимальный объем информации, которая за один раз может быть получена или передана по этой шине.

Операции обмена информацией осуществляются при одновременном участии всех шин. Рассмотрим, к примеру, действия, которые должны быть выполнены для передачи информации из процессора в память. В простейшем случае необходимыми являются три действия:

1. На адресной шине процессор должен выставить сигналы, соответствующие адресу ячейки памяти, в которую будет осуществляться передача информации.

2. На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть записана в память.

3. После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с памятью, что приведет к занесению необходимой информации по требуемому адресу.

Внешние устройства разнесены пространственно и могут подключаться к локальной магистрали в одной точке или множестве точек, получивших название портов ввода-вывода. Тем не менее, точно так же, как ячейки памяти взаимно однозначно отображались в адресное пространство памяти, порты ввода-вывода можно взаимно однозначно отобразить в другое адресное пространство – адресное пространство ввода-вывода. При этом каждый порт ввода-вывода получает свой номер или адрес в этом пространстве. В некоторых случаях, когда адресное пространство памяти (размер которого определяется шириной адресной шины) задействовано не полностью (остались адреса, которым не соответствуют физические ячейки памяти), и протоколы работы с внешним устройством совместимы с протоколами работы с памятью, часть портов ввода-вывода может быть отображена непосредственно в адресное пространство памяти (так, например, поступают с видеопамятью дисплеев), правда тогда эти порты уже не принято называть портами. Надо отметить, что при отображении портов в адресное пространство памяти для организации доступа к ним в полной мере могут быть задействованы существующие механизмы защиты памяти без организации специальных защитных устройств.

В ситуации прямого отображения портов ввода-вывода в адресное пространство памяти действия, требуемые для записи информации и управляющих команд в эти порты или для чтения данных из них и их состояний, ничем не отличаются от действий, производимых для передачи информации между оперативной памятью и процессором, и для их выполнения применяются те же самые команды. Если же порт отображен в адресное пространство ввода-вывода, то процесс обмена информацией инициируется специальными командами ввода-вывода и включает в себя несколько другие действия. Например, для передачи данных в порт необходимо выполнить следующее:

1. На адресной шине процессор должен выставить сигналы, соответствующие адресу порта, в который будет осуществляться передача информации, в адресном пространстве ввода-вывода.

2. На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть передана в порт.

3. После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с устройствами ввода-вывода (переключение адресных пространств!), что приведет к передаче необходимой информации в требуемый порт.

Существенным отличием памяти от устройств ввода-вывода является то, что занесение информации в память является окончанием операции записи, в то время как занесение информации в порт зачастую является инициализацией реального совершения операции ввода-вывода. Что именно должны совершать устройства, приняв информацию через свой порт, и каким именно образом они должны поставлять информацию для чтения из порта, определяется электронными схемами устройств, получившими названия контроллеров. Контроллер может непосредственно управлять отдельным устройством (например, контроллер диска), а может управлять несколькими устройствами, связываясь с их контроллерами посредством специальных шин ввода-вывода (шина IDE, шина SCSI и т.д.).

Современные вычислительные системы могут иметь разнообразную архитектуру, множество шин и магистралей, мосты для перехода информации от одной шины к другой и т.п. С точки зрения нашего рассмотрения важными является только следующие моменты:

§ Устройства ввода-вывода подключаются к системе через порты.

§ Могут существовать два адресных пространства: пространство памяти и пространство ввода-вывода.

§ Порты, как правило, отображаются в адресное пространство ввода-вывода и, иногда, непосредственно в адресное пространство памяти.

§ Использование того или иного адресного пространства определяется типом команды, выполняемой процессором, или типом ее операндов.

§ Физическим управлением устройством ввода-вывода, передачей информации через порт, и выставлением некоторых сигналов на магистрали занимается контроллер устройства.

Именно единообразие подключения внешних устройств к вычислительной системе является одной из составляющих идеологии, позволяющих добавлять новые устройства без перепроектирования всей системы.

Если поручить неподготовленному пользователю сконструировать систему ввода-вывода, способную работать со всем множеством внешних устройств, то, скорее всего, он окажется в ситуации, в которой находились биологи и зоологи до появления трудов Линнея. Все устройства разные, отличаются по выполняемым функциям и своим характеристикам, и кажется, что принципиально невозможно создать систему, которая без больших постоянных переделок позволяла бы охватывать все многообразие видов. Вот перечень лишь несколько направлений (далеко не полный), по которым различаются устройства:

§ Скорость обмена информацией может варьироваться в диапазоне от нескольких байт в секунду (клавиатура) до нескольких гигабайт в секунду (сетевые карты).

§ Некоторые устройства могут быть использованы параллельно несколькими процессами (являются разделяемыми), в то время как другие требуют монопольного захвата процессом.

§ Устройства могут запоминать выведенную информацию для ее последующего ввода или не обладать этой функцией. Устройства, запоминающие информацию, в свою очередь, могут дифференцироваться по формам доступа к сохраненной информации: обеспечивать к ней последовательный доступ в жестко заданном порядке или уметь находить и передавать только необходимую порцию данных.





Дата публикования: 2014-11-28; Прочитано: 221 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...