Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Двойственность в задачах линейного программирования



С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной; первоначальная задача называется исходной, или прямой.

Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой.

Хорошо разработанный математический аппарат линейного программирования позволяет не только получать с помощью эффективных вычислительных процедур оптимальный план, но и делать ряд экономически содержательных выводов, основанных на свойствах задачи, двойственной к исходной ЗЛП. Переменные двойственной задачи уi называют объективно обусловленными оценками, или двойственными оценками, или «ценами» ресурсов, или теневыми ценами.

Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Задача двойственная к исходной задаче строится по следующим правилам:

1) упорядочивается запись исходной задачи, т. е. если целевая функция задачи максимизируется, то ограничения-неравенства должны быть вида £, если минимизируется, то вида ≥. Выполнение этих условий достигается умножением соответствующих ограничений на -1;

2) матрица А, составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная матрица АТ в двойственной задаче получаются друг из друга транспонированием.

3) число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе двойственной задачи - числу переменных в исходной задаче.

4) коэффициентами при неизвестных в целевой функции двойственной задачи являются свободные члены в системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи - коэффициенты при неизвестных в целевой функции исходной задачи.

5) каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записанному в виде неравенства, соответствует переменная, связанная с условием неотрицательности. Если функциональное ограничение исходной задачи является равенством, то соответствующая переменная двойственной задачи может принимать как положительные, так и отрицательные значения.

Дадим экономическую интерпретацию пары двойственных задач.

Рассмотрим задачу рационального использования ресурсов. Пусть предприятие располагает ресурсами , которые могут использоваться для выпуска n видов продукции. Пусть также известны стоимость единицы j-го вида продукции и норма потребления i-го ресурса на производство единицы j-й продукции — аij.

Требуется определить объем производства продукции каждого вида , максимизирующий суммарную стоимость

При этом расход ресурсов не должен превышать их наличия:

 
 

Все неизвестные по своему экономическому смыслу неотрицательны:

По исходным данным сформулируем другую экономическую задачу (двойственную).

Предположим, что некоторая организация может закупить все ресурсы, которыми располагает предприятие. Необходимо определить оптимальные цены (оценки) на эти ресурсы исходя из естественного условия, что покупающая организация стремится минимизировать общую оценку ресурсов. Нужно, однако, учитывать и тот факт, что за ресурсы покупающая организация должна уплатить сумму, не меньшую той, которую может выручить предприятие при организации собственного производства продукции.

Математическая модель задачи имеет вид


Здесь z — общая оценка ресурсов. Каждое j-е ограничение из системы представляет собой неравенство, левая часть которого равна оценке всех ресурсов, расходуемых на производство единицы j-го вида продукции, а правая — стоимости единицы этой продукции.

Заметим, что ценность видов ресурсов нельзя отождествлять с действительными ценами, по которым осуществляется его закупка. В данном случае речь идет о некоторой мере, имеющей экономическую природу, которая характеризует ценность ресурса только относительно полученного оптимального решения.

Пример

1)

Решение:

Сведем ограничения типа ≥ к ограничениям ≤ умножением на -1.

Так на все переменные наложены условия неотрицательности, то в двойственной задаче все ограничения будут являться неравентвами.

Так как ограничений в прямой задаче – два, то двойственная задача будет иметь две переменные, а так как прямая задача содержит три переменные, то двойственная задача будет иметь три ограничения.

Коэффициенты ограничений двойственной задачи получим транспонированием системы ограничений прямой задачи.

Двойственная задача является задачей на минимум, а ограничения имеют знаки ≥.

Учитывая указанные выше правила, имеем двойственную задачу:

2)

Решение:

Так как на переменные наложены условия неотрицательности, то ограничения двойственной задачи будут ограничениями-неравенствами. Так как ограничения прямой задачи являются равенствами, то на переменные двойственной задачи не накладывается условие неотрицательности.

Так как ограничений в прямой задаче – два, то двойственная задача будет иметь две переменные, а так как прямая задача содержит четыре переменные, то двойственная задача будет иметь четыре ограничения.

Коэффициенты ограничений двойственной задачи получим транспонированием системы ограничений прямой задачи.

Двойственная задача является задачей на минимум, а ограничения имеют знаки ≥.

В результате получим следующую модель двойственной задачи:





Дата публикования: 2014-11-26; Прочитано: 563 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...