Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Раздел 5. Факторы, влияющие на токсичность 3 страница. 1. 5. Биологическое значение толерантности



1.5. Биологическое значение толерантности

Толерантность можно рассматривать как защитную реакцию организма на действие ксенобиотиков, при которой снижается чувствительность к веществам, и, не редко, лишь в отношении части эффектов, вызываемых токсикантом. Последнее обстоятельство является одной из причин существенных различий в проявлениях острой, подострой и хронической интоксикаций одним и тем же веществом.

2. Химическая зависимость

Повторный контакт с химическим веществом может привести к зависимости от него. Наиболее частой формой зависимости является лекарственная зависимость, наиболее часто развивающаяся в отношении психотропных препаратов.

В соответствии с положением, разработанным ВОЗ в 1964 году, лекарственная зависимость определяется как состояние психической или физической зависимости от некоего вещества, действующего на ЦНС и принимаемого либо непрерывно, либо время от времени. Это определение охватывает, по сути, все биологически активные вещества и, следовательно, такие как алкоголь, табак, наркотики и др.

Нередко говорят о пристрастии, рассматривая этот термин, как синоним зависимости. Тем не менее между понятиями существуют существенные различия. По определению ВОЗ (1957 г.), пристрастие это состояние связанное с периодической или постоянной интоксикацией, произвольно вызываемой потреблением натуральных или синтетических веществ и характеризующееся 4 признаками:

- непреодолимое стремление к потреблению вещества;

- тенденция к постепенному увеличению вводимой дозы;

- психическая или физическая зависимость от токсиканта;

- опасность как для отдельного лица, так и для общества.

Таким образом, зависимость является лишь одним из неотъемлемых атрибутов пристрастия. В настоящее время предлагается выделять 6 основных типов химического пристрастия:

1. Морфиновый тип: сильная психическая и физическая зависимость с постепенным развитием толерантности.

2. Барбитурат-алкогольный тип: выраженная психическая и физическая зависимость с развитием толерантности.

3. Кокаиновый тип: сильная психическая зависимость, при отсутствии физической зависимость; толерантность развивается только в условиях эксперимента.

4. Канабиноловый тип: выраженная психическая зависимость при отсутствии или слабо выраженной физической зависимости; отсутствие толерантности.

5. Галюциногенный тип (ДЛК-тип): выраженная, до сильной, психическая зависимость; отсутствие физической зависимости; значимая толерантность.

6. Амфетаминовый тип: значимая, но индивидуально по-разному проявляющаяся психическая зависимость, при отсутствии физической зависимости; сильная толерантность.

2.1. Психическая зависимость

Психическая зависимость - центральный признак химической зависимости, развивающийся при всех её формах. Она характеризуется непреодолимым стремлением к продолжению, сделавшегося привычкой, потребления вещества. Психические проявления синдрома отмены состоят в появлении страха, беспокойства, депрессии вплоть до суицидных попыток, стремлении к поиску веществ. Как указывалось ранее, психическая зависимость не всегда связана с физической зависимостью и развитием толерантности.

2.2. Физическая зависимость

Физическая или соматическая зависимость от вещества связана со структурно-функциональными изменениями ЦНС, которые при внезапной отмене препарата проявляются в форме синдрома отмены или абстиненции. Симптомы абстинентного синдрома подразделяют на вегетативные и невегетативные. К первой группе относятся: диарея, непроизвольное мочеиспускание, озноб, слюнотечение, миоз (иногда мидриаз), экзофтальм, слезотечение, тахипное, тошнота, рвота. Ко второй группе симптомов относятся: беспокойство, тремор, раздражительность, мио- и невралгии (наиболее выражены у морфинистов).

Физическая зависимость может развиваться не только у человека. Это явление достаточно глубоко изучается и на экспериментальных животных. В основе опытов лежит методика оценки самовведения препаратов. Предварительно канюлированное животное путем нажатия на рычаг может ввести себе определенную дозу вещества. Если вещество вызывает у животного позитивную реакцию, отмечается его постоянное самовведение. Перечень соединений, вызывающих у человека зависимость, хорошо совпадает с перечнем препаратов, позитивно стимулирующих животных. Степень точности, с которой можно выявит физическую зависимость у лабораторного животного - высока. При самовведении слабого раствора героина наблюдается его постоянное потребление путем частого нажатия на рычаг. Если концентрацию раствора увеличить, частота нажатия на рычаг уменьшается. Однако развивающаяся зависимость от препарата на столько велика, что со временем животное пробуждается ото сна только для того, чтобы в очередной раз ввести себе наркотик. Если раствор героина заменить на физиологический раствор, частота нажатия на рычаг становится очень высокой, появляются признаки синдрома отмены, устраняемые введением героина.

Характерными признаками физической зависимости являются:

- повторное введение вещества в течение нескольких недель;

- обязательное сочетание с развитием толерантности;

- как правило, сопровождается выраженной психической зависимостью;

- проявления токсического действия вещества противоположны симптомам абстинентного синдрома;

- отсутствие обязательной связи между перекрестной толерантностью и перекрестной физической зависимостью к препаратам разных групп;

- максимальная интенсивность проявлений абстинетного синдрома в первые четверо суток после отмены, с прекращением симптоматики через 1 - 2 недели.

2.3 Механизм химической зависимости

В настоящее время механизмы формирования химической зависимости изучены не достаточно. На основе многочисленных клинических и экспериментальных исследований установлено, что в основе явления, как правило, лежат структурно-функциональные изменения различных образований головного мозга, носящие адаптивный характер к длительному поступлению токсиканта в организм и проявляющиеся нарушениями их реактивности в отношении эндогенных биорегуляторов. Особое значение в этой связи придают системе вознаграждения ЦНС (reward-system) и связанным с ней нейромедиаторным механизмам. К химической зависимости приводит применение веществ, прямо или косвенно действующих на систему вознаграждения и вызывающих тем самым состояние удовлетворения, эйфории, успокоения (по меньшей мере, напоминающее опьянение), что и заставляет прибегать к их приёму. К числу нейромедиаторных механизмов, имеющих значение в формировании зависимости, в настоящее время, прежде всего, относя моноаминергические (дофаминергические, серотонинергические) и систему энкефалинов. Вещества, действующие на эти системы мозга, например, морфин, фенилалкиламины, кокаин и т.д., известны своей опасностью в плане формирования химической зависимости. Длительное использование антагонистов этих систем (нейролептиков, налорфина) не приводит к развитию зависимости.

В качестве нейробиологических механизмов развития химической зависимости рассматриваются следующие:

1. Вещество-агонист рецептора (фенамин, наркотический анальгетик и др.) угнетают высвобождение нейромедитора с одновременным уменьшением числа возбуждаемых рецепторов или изменением их функциональных свойств. Эти изменения более продолжительны, чем время действия агониста, поэтому в случае невведения вещества тонус нейромедиаторной системы понижается, что сопровождается развитием абстинетного синдрома.

2. Токсикант повышает выброс нейромедиатора из пресинаптических структур (например, усиление выделения дофамина при действии амфетамина), или блокирует его обратный захват (кокаин). В итоге запасы нейромедиатора, при длительном введении, истощаются. Отмена препарата приводит к выраженному дефициту трансмиттера, гипофункции медиаторной системы, что и сопровождается развитием абстиненции.

3. Препарат сенсибилизирует рецептор к действию нейромедитора. Развивающиеся при этом адаптивные процессы более продолжительны, чем действие вещества. В итоге прекращение введения вещества сопровождается гипофункцией нейромедиаторной системы с развитием синдрома отмены (бензодиазепины).

4. Вещества вызывают стойкие адаптивные изменения физико-химических свойств биологических мембран и, вследствие этого, нарушение их возбудимости. Отмена препаратов приводит к развитию абстиненции (спирты, органические растворители - алкоголизм, токсикомании).

Рассмотренные механизмы хотя и являются экспериментально доказанными в различных моделях, тем не менее представляют собой существенное упрощение проблемы. Ни в коем случае нейробиологические основы зависимости нельзя рассматривать в отрыве от сложных психофизиологических и психосоциальных факторов, особенностей структуры личности пациента.

3. Привыкание

Толерантность, пристрастие, зависимость к токсиканту не следует смешивать с явлением привыкания к веществу. ВОЗ определяет привыкание как стремление к приему вещества без отчетливой тенденции к развитию толерантности и физической зависимости. Формирование психической зависимости - возможная, но не обязательная характеристика явления. Наиболее часто люди привыкают к использованию лекарств. Так, есть лица, способные заснуть только после приема таблеток, даже если это плацебо. Привычка может быть прервана простым волевым усилием, без развития серьезных осложнений. Однако возможна трансформация привычки в психическую зависимость от вещества.

4. Хроническое отравление

Хроническим называется отравление, развивающееся в результате длительного воздействия токсиканта, как правило, в дозах, не вызывающих проявлений токсического процесса при однократном поступлении в организм. Весь перечень эффектов и механизмов, рассмотренных выше, может быть элементом хронической интоксикации, но далеко не исчерпывается им. В каждом случае воздействия конкретного вещества механизмы хронического отравления достаточно специфичны. Однако все они могут быть отнесены к одной из групп:

1. Токсикокинетические;

2. Токсикодинамические.

В основе токсикокинетических механизмов развития хронической интоксикации лежат процессы, приводящие к накоплению (материальная кумуляция) веществ в органах-мишенях до некоего критического уровня, достаточного для инициации патологии (тяжелые металлы, полициклические ароматические углеводороды, полигалогенированные углеводороды и т.д. - вещества с длительным периодом полуэлиминации).

Токсикодинамические механизмы представляют собой совокупность постепенного накопления и накопления многочисленных сохраняющихся во времени микронарушений со стороны биологических систем организма, развивающихся вследствие повторного воздействия токсиканта в подпороговых дозах (функциональная кумуляйция), и изменения реактивности биосистем в отношении токсикантов (см. выше) (ядовитые газы, ФОС, цианиды и т.д. - вещества с коротким периодом полуэлиминации).

В основе хронического отравления подавляющим большинством токсикантов лежат механизмы обеих групп.

ГЛАВА 5.4. КОЕРГИЗМ КСЕНОБИОТИКОВ

В реальных условия биологические системы, как правило, подвергаются воздействию более чем одного вещества. При этом большинство соединений (действуя в достаточной дозе) таким образом изменяют состояние организма, что последующий контакт с другими ксенобиотиками приводит к формированию эффектов качественно и количественно отличающихся, от вызываемых ими у интактных организмов, т.е. вызывают аллобиотические состояния. Например, уже однократный прием хлорорганического инсектицида алдрина мышами приводит к существенному изменению их чувствительности к фосфорорганическим инсектицидам (таблица 1).

Таблица 1. Влияние алдрина (16 мг/кг, однократно через рот, за 4 суток до испытания) на чувствительность белых мышей к некоторым ФОС

Вещество Смертность в группе (%)
(мг/кг) Контроль После потребления алдрина
Паратион (22)    
Параоксон (40)   44,4
ТЭПФ (10)    
ДФФ (50) 66,6  
Гутион (15) 84,6 15,4
ТОКФ (2000)    
ОМФА (25)    

(A.J. Triolo, J.M. Coon, 1966)

Для обозначения всех форм эффектов, развивающихся при совместном действии химических веществ, не зависимо от их строения и вида подвергающейся воздействию биологической системы, используют термин - коергизм. Проявления коергизма возможно как вследствие одномоментного (комбинация), так и последовательного (сукцессия) действия веществ на организм (рисунок 1).

Рисунок 1. Коергизм при одномоментном и последовательном поступлении веществ "А" и "В" в организм.

Проявления коергизма по показателям качества и интенсивность развивающихся эффектов можно представить в форме трех основных типов: аддитивный синергизм (суммация), потенцирующий синергизм (потенцирование), антагонизм (таблица 2).

Таблица 2. Виды коергизма

Аддитивный синергизм Совместный эффект А и В равен сумме эффектов каждого из веществ. Вещества имеют либо близкую структуру, либо одинаковый механизм действия
Потенцирующий синергизм Совместный эффект А и В больше суммы эффектов каждого из веществ. Вещества имеют различные механизмы действия. Возможно действие одного из веществ, как аллостерического активатора рецептора другого вещества
Антагонизм Совместный эффект А и В существенно ниже суммы эффектов каждого из веществ вплоть до полного устранения эффектов

1. Механизмы коергизма

Взаимное влияние химических веществ на развивающиеся эффекты может осуществляться во все периоды их действия и даже после выведения одного из них из организма.

1.1. Взаимодействие в период аппликации

В ряде случаев взаимодействие веществ происходит уже в период их аппликации, при этом образуются продукты с иными свойствами. Этот вариант взаимодействия называется псевдокоергизм. Наибольшее внимание с точки зрения токсикологии заслуживают такие явления как адсорбционное связывание ксенобиотика на поверхности биологически инертного вещества, химическое взаимодействие веществ, связывание ксенобиотика с макромолекулами.

Адсорбция на поверхности. Наиболее изученным примером подобного рода взаимодействия является процесс связывания токсиканта активированным углем. Адсорбционная емкость активированного угля объясняется его пористостью и большой площадью адсорбирующей поверхности (1000 см2/г угля). На поверхности локализуются участки связывания как гидрофильных, так и гидрофобных молекул. Полярные вещества, например ионы, низкомолекулярные спирты - плохо связываются активированным углем. Неполярные молекулы адсорбируются тем лучше, чем выше коэффициент распределения масло/вода. Активированный уголь занимает прочное место в системе оказания помощи отравленным в качестве "энтерального" сорбента, а также средства для проведения процедуры гемосорбции. Для обезвреживания принятого внутрь токсиканта применяют и другие адсорбирующие вещества, прежде всего ионообменные смолы. Их адсорбционная мощность во многом зависит от строения токсиканта (заряд активных групп), рН среды и времени контакта между веществом и смолой.

Химическое взаимодействие. В ряде случаев в основе коергизма лежит химическое взаимодействие веществ. Часто оно сопровождается снижением токсичности действующих соединений. Так еще в 18 веке для "обезвреживания" ядов и лечения отравлений предлагали использовать вещества, способные взаимодействовать с токсикантом в пробирке. Практическое значение имели реакции, приводящие к образованию нерастворимых, а потому практически безвредных, продуктов. Среди предлагавшихся средств была, в частности, сероводородная вода, приём которой при интоксикации сулемой считается эффективным мероприятием до настоящего времени (образуется нерастворимый сульфид ртути). Хорошо известно, что щелочи осаждают алкалоиды, ускоряют гидролиз эфиров, способствуют окислению легко окисляемых веществ. Алкалоиды осаждаются также солями йода и брома, дубильными кислотами, разрушаются нитритами. Токсичность люизита (хлоралкильное производное трехвалентного мышьяка), попавшего на кожу, существенно снижается при обработке пораженного участка концентрированным раствором йода (мышьяк окисляется до пятовалентного состояния).

В ряде случаев химическое взаимодействие ксенобиотиков может приводить к образованию более опасных соединений. Так, целый ряд веществ, такие как вторичные и третичные амины, N-алкиламиды, N-алкилгуанидины, взаимодействуя в кислой среде с нитритами, способны образовывать N-нитрозосоединения. При приеме внутрь таких веществ в желудке существенно возрастает концентрация нитрозосоединений. Эндогенно нитриты, как известно, образуются из нитратов под влиянием восстанавливающих микроорганизмов. Количество образующихся N-нитрозосоединений из экзогенных веществ, таким образом, зависит от их потребления, реакционной способности, времени нахождения в желудке, содержания нитритов и рН желудочного сока. При обычных условиях количество нитрозосоединений в ЖКТ не велико, поскольку их предшественники редко потребляются в больших количествах. Кроме того витамины С и Е, содержащиеся в пище, практически полностью блокируют процесс нитрозообразования. К веществам, стимулирующим процесс относится, в частности, тиоцианат, содержание которого повышено у курильщиков. Около 90% известных нитрозосоединений являются канцерогенами для животных различных видов.

1.2. Токсикокинетические механизмы коергизма.

Концентрация веществ в тканях пропорциональна содержанию их в крови и определяется соотношением скоростей поступления и оттока. В этой связи вещество "В" может влиять на токсикокинетику вещества "А" несколькими способами:

- изменять абсорбцию вещества "А" вследствие модификации проницаемости биологических барьеров или гемодинамики в органе (ткани). Алкалоз и ацидоз модифицируют захват химических веществ;

-вступать в химическое или физико-химическое взаимодействие с веществом "А", что приведет к изменению концентрации каждого из реагентов во внутренней среде организма. Действие ряда антидотов (комплексообразователи и др.) основано на этом принципе;

- вытеснять вещество "А" из связи с транспортными белками плазмы крови и увеличивать содержание токсиканта в биосредах (вытеснение дикумарола из связи с белками крови фенилбутазоном);

- изменять скорость и характер элиминации путем влияния на биотрансформацию и экскрецию вещества "А" (индукция микросомальных ферментов, назначение мочегонных средств).

1.2.1. Взаимодействие веществ при резорбции

Наиболее хорошо изучено взаимодействие веществ при их энтеральном поступлении. Частым примером рассматриваемой формы взаимодействия является влияние алкоголя на всасывание химических веществ. В основе эффекта лежит изменение подвижности желудочно-кишечного тракта и значений рН содержимого желудка. Этанол в концентрациях более 10% замедляет скорость опорожнения желудка, особенно в случае гиперосмотичности его содержимого. В концентрациях 1 - 10% спирт усиливает секрецию соляной кислоты, что приводит к понижению рН желудочного сока. Последнее обстоятельство сопровождается усилением всасывания токсикантов, обладающих свойствами слабых кислот (например производных барбитуровой кислоты). Этанол в высоких концентрациях действует противоположным образом. В свою очередь некоторые вещества (кофеин, дисульфирам) замедляют резорбцию этанола.

Поверхностно-активные вещества повышают всасываемость в желудочно-кишечном тракте жирорастворимых веществ. В опытах на крысах показана способность диалкилпропионамидов усиливать резорбцию преднизона и преднизолона, вероятно за счет формирования комплекса, лучше проникающего через липидные мембраны клеток слизистой оболочки.

В ряде случаев коергизм веществ при поступлении их в желудочно-кишечном тракте объясняется повреждением слизистой одним из токсикантов (агрессивные жидкости, иприты, соли некоторых металлов и др.), что приводит к нарушению свойств данного биологического барьера.

Веществом с выраженными "проводниковыми" свойствами, облегчающим проникновение веществ через биологические барьеры, является диметилсульфоксид (ДМСО). 15% раствор ДМСО в 2 - 8 раз усиливает резорбцию ксенобиотиков через кожу.

Изменение легочной резорбции, как правило, связано с нарушениями свойств альвеолярно-капиллярного барьера. Вещества, вызывающие раздражение дыхательных путей, отек легких, затрудняют проникновение в организм других газообразных соединений.

Различные сосудосуживающие препараты, такие как адреналин, норадреналин, вазопрессин, замедляют поступление веществ из мест аппликации. Напротив усиление резорбции может наблюдаться при совместном действии сосудорасширяющих веществ.

1.2.2. Коергизм веществ, в процессе распределения

1.2.2.1. Модификация связывания белками плазмы крови

Вещества существенно различаются по их способности связываться белками плазмы крови. От этого во многом зависят особенности их распределения в организме и токсичность. Так, многие фосфорорганические соединения связываются в плазме крови с алиэстеразами (Lauwerys, Murphy, 1969). Чем большая часть токсиканта связывается в крови, тем меньшая проникает в ткани, угнетает активность ацетилхолинэстеразы и тем менее пагубным, следовательно, оказывается токсическое действие ксенобиотика. Известно, что такие хлорорганические инсектициды как ДДТ, диэльдрин, хлордан увеличивают содержание алиэстераз в плазме крови экспериментальных животных (мыши, крысы, собаки). При этом токсичность фосфорорганических соединений для этих животных снижается (таблица 3).

Таблица 3. Процент связывания плазмой крови и токсичность фосфакола для мышей предварительно отравленных хлорорганическими инсектицидами

Инсектицид Фракция фосфакола, не связанная плазмой крови (%) Летальность в группе животных, отравленных фосфаколом (2 мг/кг)
Контроль 17,3 +/- 1,9  
ДДТ (75 мг/кг) 7,4 +/- 4,9  
Диэльдрин (16 мг/кг) 0,7 +/- 0,1  
Хлордан (150 мг/кг) 0,4 +/- 0,1  

(A.J. Triolo et al., 1970)

Напротив, введение крысам три-о-крезил фосфата (ТОКФ), вещества полностью блокирующего места связывания ФОС с алиэстеразой (в дозе 125 мг/кг), но при этом не угнетающего активность ацетилхолинэстеразы, сопровождается повышением токсичности фосфакола примерно в два раза (Cohen, Murfy, 1974).

1.2.2.2. Изменение свойств тканей

Под влиянием многих химических веществ изменяется кровоснабжение тканей и органов, проницаемость биологических барьеров, электрический потенциал клеток, конформация макромолекул и т.д., то есть свойства, определяющие характер распределения веществ в организме. Примером такого действия является ослабление резерпином накопления дигитоксина в сердечной мышце, скелетных мышцах и печени. Пробеницид оказывает сильное влияние на характер распределения гликозидов в организме. Особое значение для развития токсического процесса имеет влияние коергистов на проницаемость гематоэнцефалического барьера. Так, хорошо известно, что нортриптилин, хлорпромазин усиливают проницаемость ГЭБ, в частности для манитола и инулина. Проницаемость этого барьера усиливается при тяжелых интоксикациях ФОС.

Вещества, обладающие свойствами -адреноблокаторов и одновременно высоким коэффициентом распределения в системе масло/вода (более 20), значительно угнетают транспорт глюкозы через мембрану эритроцитов.

1.2.2.3. Мобилизация биологически активных веществ

Одна из форм распределения ксенобиотика в организме - депонирование. Целый ряд веществ, особенно металлы (ртуть, свинец, мышьяк, кадмий, стронций и т.д.), некоторые жирорастворимые соединения (ДДТ, гексхлорбензол, дильдрин и т.д.), долго сохраняется в организме. Некоторые из этих веществ можно мобилизовать из мест связывания с помощью специальных средств. Так, выведение радия и стронция можно несколько усилить путем введения в организм кальция. Ион брома ускоренно выводится при нагрузке солями, содержащими ион хлора. Соли тяжелых металлов можно связать с помощью хелатирующих агентов, а затем образовавшиеся водо-растворимые комплексы удалить назначением мочегонных. Эффективность хелатирующих агентов при интоксикации тяжелыми металлами представлена в таблице 4.

Таблица 4. Эффективность некоторых комплексообразователей при интоксикации металлами.

Комплексон Mn Co Zn Cu Cd Au Pb
Ca,Na ЭДТА +     + +   ++
Ca,Na ДТПА +   +   + + ++
D-пенициламин   + ++ ++   ++  
  Fe Ni Tl As Sb Hg  
Димеркаптол   +   ++ + ++  
Диэтилдитиокарбамат   ++ ++        
Десфериоксамин ++            

(Wirth et al, 1971)

1.2.3. Коергизм в процессе биотрансформации

Часто коергизм является следствием взаимного влияния ксенобиотиков на процессы биотрансформации. Можно выделить следующие общие механизмы такого действия:

- конкурентное и неконкурентное угнетение активности энзимов, участвующих в биотрансформации веществ;

- повреждение субклеточных структур, ответственных за метаболизм ксенобиотиков (гладкий эндоплазматический ретикулум);

- угнетение синтеза или активация разрушения метаболизирующих энзимов;

- активация синтеза или угнетение разрушения метаболизирующих энзимов.

1.2.3.1. Угнетение активности энзимов, метаболизирующих ксенобиотики

Угнетение активности энзимов I и II фаз метаболизма ксенобиотиков приводит к изменению их биологической активности, продолжительности действия.

Реакции I фазы метаболизма. Два токсиканта или продукты их метаболизма могут взаимодействовать с одним и тем же метаболизирующим энзимом. В следствие этого замедляется элиминация либо одного, либо обоих коергистов. Угнетение превращения ксенобиотика "А" может быть следствием конкурентного (взаимодействие с активным центром) и неконкурентного (взаимодействие с аллостерическим центром) действия на энзим вещества "В".

Угнетение активности микросомальной этанолметаболизирующей окислительной системы энзимов (МЭОС) сопровождается снижением скорости элиминации спиртов и ряда других ксенобиотиков. Так, хлорпромазин, хлоралгидрат являются конкурентными ингибиторами алкогольдегидрогенезы. Циметидин (антагонист Н2-рецепторов) обладает высоким сродством к цитохром-Р450 зависимым оксидазам и МЭОС. Обе группы препаратов замедляют метаболизм этанола. В свою очередь этанол, находясь в организме, угнетает метаболизм некоторых ксенобиотиков метаболизируемых системой оксидаз смешанной функции (ОСФ). Так, на фоне действия этанола существенно замедляется элиминация мепрабомата, пентобарбитала, хлордиазепоксида, метадона, фенотиазина, кофеина, пропоксифена и др. В опытах in vitro этанол угнетает гидроксилирование анилина и фенобарбитала, N-деметилирование аминопирина и этилморфина. Этанол значительно замедляет биопревращение метилового спирта в организме, что позволяет использовать его, как антидот метанола.

Большая группа химических веществ является ингибиторами микросомальной биотрансформации ксенобиотиков (таблица 5).

Таблица 5. Ингибиторы микросомальной биотрансформации ксенобиотиков

SKF-525А Lilly-18947 CFT 1201 Ипрониазид Метирапон Пиперонилбутоксид 7,8-бензофлавон DPEA Пропоксифен Циметидин

Среди веществ, угнетающих активность микросомальных энзимов, наиболее изученным является SKF-525, хотя механизм его действия до конца не понят. Полагают, что в основе действия лежит конкурентное и неконкурентное угнетение активности энзимов, неспецифическое повреждение гладкого эндоплазматического ретикулума.





Дата публикования: 2014-11-04; Прочитано: 391 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...