Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ізотермічний процес



Діаграма цього процесу в координатах p, V є гіперболою. 1-3 – ізотермічний стиск, 1-2 – ізотермічне розширення (рис. 71).

Робота газу при ізотермічному роз­ширенні: . При внутрішня енергія ідеального газу не змінюється, тобто і ,

тобто вся кількість теплоти, надана газу, витрачається на виконання ним роботи проти зовнішніх сил:

.

Робота розширення газу додатна. У випадку стиску газу (процес ) робота A, що виконується газом, від’ємна, водночас зовнішні сили виконують додатну роботу . При цьому , тобто теплота від газу відводиться.

5 .Адіабатичний процес. 6. Рівняння Пуассона.

Адіабатний – це такий процес, який відбувається без обміну теплотою між термодинамічною системою i оточуючим середовищем.

Розглянемо, при яких умовах можна реально здійснити адіабатний процес.
Можливо в трьох випадках здійснити процес, який буде адіабатним.

В першому випадку необхідна адіабатна оболонка, теплопровідність якої дорівнює нулю. Такою оболонкою може служити посудина Дьюара. В такій посудині з подвійними посрібленими стінками, з простору між якими відкачано повітря, передачі теплоти через стінки практично не буде.

Другий випадок адіабатних процесів – це процеси, що відбуваються дуже швидко. При швидкому стиску газу затрачається робота , в наслідок чого збільшується внутрішня енергія , що викликає підвищення температури. При підвищенні температури деяка кількість теплоти повинна бути передана навколишньому середовищі, що знаходиться при нижчій температурі, але процес теплопередачі є доволі інертним, тому при швидкому стиску теплота не встигає поширитись з даного об’єму.

Третій випадок – це процеси, що відбуваються в дуже великих об’ємах газу, наприклад, в атмосфері. Якщо в атмосфері відбудеться зменшення тиску – розрідження, яке виникає внаслідок атмосферної діяльності, то кількість теплоти, яка повинна бути передана із навколишнього простору для того, щоб вирівняти температуру, яка понизилась внаслідок адіабатного розширення, просто не встигне поширитися упродовж значного проміжку часу.

Продиференціюємо рівняння Клапейрона-Менделєєва:

.

Звідси

.

Підставимо значення у вираз для першого закону термодинаміки:

i .

Оскільки , то , ,

де – показник адіабати, або коефіцієнт Пуассона.

Проінтегруємо отриманий вираз:

, ,

Отже,

або .

Цей вираз називається рівнянням Пуассона.

Для переходу до інших змінних вик­ористаємо у рівнянні Пуассона рівняння Клапейрона-Менделєєва і одержимо:

і .

і .

Побудуємо графіки рівнянь:

1). (адіабата),

(ізотерма) (рис. 72).

Розрахуємо роботу, яку виконує газ при адіабатному процесі . Вона вимірюється числово площею, заштрихованою на рис. 72. Якщо газ адіабатно розширюється від об’єму до , то його температура зменшується від до і робота розширення ідеального газу

.

Оскільки, як показано під час розгляду теплоємності ідеального газу,

, то .

Якщо використати рівняння адіа­батного процесу у змінних T, V і T, p, отримуємо

.

Тоді роботу газу при адіабатному процесі можна записати в такому вигляді:

, .

Робота, яка виконується газом при адіабатному розширенні , менша, ніж при ізотермічному. Це пояснюється тим, що при адіабатному розширенні відбувається охолодження газу, тоді як при ізотермічному – температура підтримується постійною за рахунок припливу ззовні еквівалентної кількості теплоти.

Ізотермічний і адіабатний процеси є ідеальними, які на практиці здійснити неможливо, до них можна лише наближатися. Ізотермічний процес повинен відбуватися нескінченно повільно; адіабатний процес може протікати з скінченою швидкістю, але в адіабатній оболонці, що має теплопровідність, яка рівна нулю. А це практично здійснити неможливо.

Розділ II. Електродинаміка.

Тема 3.Електростатика. 5.Теорема Остроградського-Гаусса та її застосування для розрахунку деяких електростатичних полів у вакуумі.

Основне завдання електростатики полягає в тому, щоб за заданим розподілом у просторі і величиною електричних зарядів знайти величину і напрямок вектора напруженості в кожній точці поля. Використання принципу суперпозиції для обчислення електричних полів пов’язано із значними математичними труднощами. Значно простіший метод розрахунку полів ґрунтується на використанні теореми Остроградського-Ґаусcа.

Нехай в однорідному електричному полі про­ведена довільна пло­щина dS. Одиничний вектор нормалі до площини складає з вектором кут (рис. 106).Потоком вектора напруженості будемо називати величину або , де – проекція вектора на напрямок вектора нормалі, а вектор .

Повний потік вектора напруженості через довільну поверхню S буде .

Знак потоку залежить від вибору напрямку нормалі. Для замкнених поверхонь нормаль, яка виходить назовні, прий­мається за додатну. Тоді там, де вектор напрямлений назовні, та додатні, а коли входить в середину поверхні, та від’ємні (рис. 107).

Для замкнених поверхонь .

Нехай навколо точкового заряду який знаходиться у вакуумі, описано довільну замкнену поверхню S (рис. 108).

Лінії напруженості виходять з цієї поверхні. Виділимо довільну елементарну площадку dS, нормаль до якої складає кут з вектором . Спроектуємо елемент dS поверхні S на поверхню радіуса r з центром в місці знаходження заряду q.Тоді Елементарний потік - тілесний кут, під яким елементарну площадку dS видно з точкового заряду q.Провівши інтегрування по куту, отримаємо

.

Якщо всередині замкненої поверхні буде негативний заряд q, то кут між нормаллю і вектором буде тупий (лінії напруженості входять всередину замкненої поверхні). Отже, . Тоді . Це означає, що потік через замкнену по­верхню .

Нехай всередині замкненої поверхні S буде N позитивних і негативних зарядів (рис. 109). За принципом суперпозиції нап­руженість поля, що створюється всіма зарядами, дорівнює сумі напруженостей , що створюється кожним зарядом зокрема і . Тому проекція вектора на напрямок нормалі до площадки dS до­рівнює алгебраїчній сумі проекці йвсіх векторів на цей напрямок: .Потік вектора напруженості результуючого поля через довільну замкнену поверхню S, що охоплює заряди , ,... , дорівнює .

Оскільки ,то

.

Отже, потік вектора напруженості у вакуумі через довільну замкнену поверхню, яка охоплює електричні заряди, дорівнює алгебраїчній сумі цих зарядів, поділеній на електричну сталу .

Це твердження називається теоремою Остроградського-Ґаусса.





Дата публикования: 2014-11-04; Прочитано: 6977 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...