Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Пульмонотоксичность - это свойство химических веществ, действуя на организм немеханическим путем вызывать структурно-функциональные нарушения со стороны органов дыхания. 3 страница



Хлор был первым веществом, примененным на войне в качестве ОВ. 22 апреля 1915 г близ Ипра германские части выпустили его из баллонов (около 70 т), направив поток газа, движимый ветром, на позиции французских войск. Позже вещество широко применялось на фронтах 1-й Мировой войны и потому клиника поражения хорошо изучена.

В редких случаях смерть может наступить уже при первых вдохах зараженного воздуха. Причина смерти - рефлекторная остановка дыхания и сердечной деятельности. Другой причиной быстрой гибели пострадавших (в течение 20 - 30 минут после вдыхания вещества) является ожег легких. В этих случаях окраска кожных покровов пострадавшего имеет зеленоватый оттенок. При вскрытии обнаруживаются сухие на ощупь, спавшиеся легкие, зеленовато-серого цвета. Левое сердце пусто, правое расширено и наполнено густой кровью.

Чаще в случаях тяжелого отравления в момент воздействия пострадавший ощущает резкое жжение в области глаз и верхних дыхательных путей, стеснение дыхания. Отравленный стремится облегчить дыхание, разрывая ворот одежды. Одновременно отмечается крайняя слабость, вследствие этого отравленные падают и лишаются возможности бежать из пораженной зоны. Практически с начала воздействия появляется надрывный, мучительный кашель, позже присоединяется одышка, причем в дыхании участвуют добавочные дыхательные мышцы. Пораженный старается занять положение, облегчающее дыхание. Речь невозможна. Иногда наблюдается рвота.

Через некоторое время после выхода из зоны поражения может наступить некоторое облегчение состояния (скрытый период), однако чаще (в отличие от поражения фосгеном) полная ремиссия не наступает: сохраняется кашель, болезненные ощущения по ходу трахеи и в области диафрагмы.

Через некоторое время (от нескольких часов до суток) состояние вновь ухудшается, усиливаются кашель и одышка (до 40 дыхательных актов в минуту), лицо приобретает синюшную, а в крайне тяжелых случаях пепельную, окраску. Над легкими прослушиваются хрипы. Пострадавший постоянно отхаркивает пенистую желтоватую или красноватую жидкость (более 1 л за сутки). Наблюдаются сильнейшие головные боли, температура тела понижается. Пульс замедлен. Артериальное давление падает. Пострадавший теряет сознание и погибает при явлениях острой дыхательной недостаточности. Если отек легких не приводит к гибели, то через несколько часов (до 48) состояние начинает улучшаться, отечная жидкость рассасывается. Однако заболевание постепенно переходит в следующий период - осложнений, во время которого обычно развиваются явления бронхопневмонии.

Как правило, отравленные, не погибшие в первые 24 часа после воздействия, выживают. Явления бронхита и пневмонии могут наблюдаться в течение нескольких недель, а легочная эмфизема оказывается стойким последствием интоксикации. Часто в качестве осложнения регистрируются длительные нарушения со стороны деятельности сердца.

В подавляющем большинстве случаев поражений легкой и средней степени тяжести через известное время наблюдается полное восстановление здоровья.

3.1.5.2. Паракват

Паракват является контактным неселективным гербицидам. В 1955 году его стали широко использовать в сельском хозяйстве. Основными поставщиками пестицида являются Китай, Тайвань, Италия, Япония, Великобритания и США. Применение ядохимиката разрешено более чем в 130 странах.

Паракват - кристаллическое вещество белого цвета, без запаха. Хорошо растворяется в воде и спиртах; температура кипения 300о С (при этом препарат разлагается). Применяется паракват в виде крупнодисперсного аэрозоля (300-600 мкм). После выседания аэрозольных частиц на почву агент быстро разрушается с образованием малотоксичных продуктов. Поэтому даже при интенсивном использовании ядохимиката не отмечено его накопления в окружающей среде.

При воздействии коммерческих растворов вещества возможны местные обратимые повреждения кожи, ногтей, слизистых глаз. Общая интоксикация развивается только при приеме через рот. Токсичность параквата для млекопитающих достаточно высока (таблица 9). Смертельная доза для человека составляет приблизительно 3-5 г/чел.

Таблица 9. Токсичность параквата для грызунов (ЛД50, мг/кг)

Путь введения Крысы Мыши
самцы самки самцы Самки
внутрь        
подкожно        
внутрибрюшинно       -

Основной причиной случаев отравления людей являются суицидные попытки. После приема вещество всасывается из тонкого кишечника и распределяется в организме. В желудочно-кишечном тракте всасывается не более 20% яда. Легкие активно аккумулируют паракват через механизм захвата биогенных аминов.

Действуя в дозах выше среднелетальных, вещество поражает все жизненно важные органы (печень, почки, легкие). Развиваются: ожог слизистой желудочно-кишечного тракта, диаррея, повреждение паренхиматозных органов и острый токсический альвеолит. Характерна отсроченная гибель отравленных через несколько дней или недель от нарастающего фиброза легких.

Поражение легких при интоксикации паракватом протекает в две фазы. В первую - деструктивную (1 - 3 сутки) - наблюдается гибель и десквамация альвеолоцитов 1-го и 2-го типов, что становится причиной острого альвеолита, токсического отека легких. Во второй фазе - пролиферативной - происходит замещение альвеолоцитов кубовидными клетками, постепенное разрастание фиброзной ткани.

В механизме токсического действия параквата ведущую роль играет образование в результате его метаболизма активного промежуточного продукта, инициирующего в клетках свободнорадикальный процесс. Повреждение мембран вследствие активации перекисного окисления липидов, сопровождается гибелью клеток, формирующих альвеолярно-капиллярный барьер. Наиболее чувствительны к параквату альвеолоциты I типа. Возможно, что в основе повреждения клеток лежит не только активация ПОЛ, но и другие механизмы.

Важную роль в процессе разрастания соединительной ткани в легких играют альвеолярные макрофаги и нейтрофилы крови. Эти клетки, активированные паракватом, продуцируют специфические гликопротеины, усиливающие пролиферацию фибробластов и их фиксацию на базальной мембране альвеол.

Предотвратить накопление параквата в легких после его приема на практике не удается. Субстраты-конкуренты яда (цистамин, путресцин и т.д.) могут оказать эффект лишь в ранние сроки от начала интоксикации (первые 8-12 часов). Лечение отравлений, помимо средств симптоматической и патогенетической терапии, включает назначение антиоксидантов: аскорбиновой кислоты (500 мг/кг), восстановленного глутатиона (14,4 мг/кг), витамина Е (30 мг/кг), витамин А (3000 ЕД на мышь)и т.д.

При отравлениях паракватом абсолютно противопоказана оксигенотерапия. Данное мероприятие достоверно ускоряет гибель отравленных. Только в случаях угрожающей жизни гипоксемии (РО2 в артериальной крови менее 40 мм Hg) возможна ингаляция кислорода.

Для профилактики фиброза легочной ткани применяют глюкокортикоиды.

3.1.5.3. Цинк

Цинк представляет собой голубовато-белый металл, находящийся в группе II периодической таблицы элементов. При нагревании выше 5000 цинк окисляется и испаряется в форме мельчайших частиц оксида цинка, которые в холодном воздухе подвергаются флокуляции с образованием дыма.

С древнейших времен человек использовал сплав цинка с медью и оловом (бронза), но вероятно не был знаком с чистым металлом вплоть до 15 века.

Мировая продукция металла в настоящее время составляет более 7 млн. тонн в год. Цинк и его соединения широко используется в хозяйственной деятельности.

Цинк является эссенциальным элементом организма. Высокое содержание его отмечается в предстательной железе, мышцах, поджелудочной железе, костях, почках.

Токсичность металла и его соединений мала. Наибольшую опасность представляют ингаляционные поражения дымами, содержащими соединения цинка, и аэрозолем оксида цинка. Так, после вдыхания ZnO в концентрации около 600 мг/м3 в течение 45 минут у кошек сразу после извлечения из камеры отмечаются нарушение координации движений, тремор, затруднение дыхания, понижение температуры тела.

Вследствие своих раздражающих свойств, хлорид цинка вызывает воспалительное повреждение кожи и поражения глаз. Ингаляция пыли, содержащей соли цинка, сопровождается раздражением слизистой оболочки верхних дыхательных путей.

Ингаляция паров и дыма, содержащего металлический цинк в высоких концентрациях приводит к формированию респираторного дистресс-синдрома, который может развиться спустя несколько суток после ингаляции, а в малых концентрациях - состояния, называемого "лихорадка литейщиков". Проявления синдрома включает: металлический вкус во рту, сухой кашель, учащение дыхания, утомляемость, миалгии, лихорадку, озноб, развивающиеся спустя 4 - 12 часов после воздействия. Температура может подниматься до 400. Количество лейкоцитов достигает 20000. Продолжительность приступа 1 - 3 часа. Со стороны ЦНС наблюдаются неспецифические эффекты типа ощущения усталости, вялости. Полная нормализация состояния - в течение 24-48 часов. Осложнения не наблюдаются. Достаточно быстро (в течение суток от начала контакта) формируется толерантность к действию металла, однако столь же быстро (1-2 дня) она исчезает. В этой связи характерно приступообразное течение этого вида профессиональной патологии. Наблюдаемая картина проявляется особенно ярко в начале трудовой недели, после перерыва в действии вещества в выходные дни. Отсюда еще один термин, обозначающий процесс - "утренняя лихорадка понедельника".

При ингаляционном поражении соединениями цинка необходимы мероприятия, направленные на профилактику токсического отека легких. При развившемся респираторном дистресс-синдроме взрослых - оказание помощи по общим правилам.

3.2. Хронические патологические процессы химической этиологии

Наиболее частыми формами токсического процесса, развивающегося при длительном профессиональном или экологическом действии пульмонотоксикантов, являются вяло текущие воспалительные процессы, гиперреактивные состояния дыхательных путей, диффузный интерстициальный фиброз легких, гранулематоз, облитерация дыхательных путей, канцерогенез. Перечень токсикантов - наиболее частых причин указанных состояний представлен в таблице 10.

Таблица 10. Перечень токсикантов, вызывающих патологические состояния дыхательной системы при длительном воздействии

Диффузный интерстициальный фиброз: алюминий, асбест, бериллий, угольная пыль, кобальт, медь, коалин, пары ртути, никель, масляная аэрозоль (липидная пневмония), паракват, кремниевая пыль, тальк, некоторые лекарства (блеомицин, бисульфан, циклофосфамид и др.)
Облитерирующий бронхиолит: аммиак, оксид кадмия, хлор, хлорпикрин, сероводород, метилсульфат, кислород по давлением, озон, фосген, диоксид серы, трихлорэтилен
Гигантоклеточные пневмонии: кобальт, тяжелые металлы
Канцерогенез: асбест, акрилонитрил, арсенаты и арсениты (триоксид мышьяка), бериллий, хлорсодержащие эфиры (хлорметиловый эфир), кадмий, хром, хроматы, бензпирен, иприты, никилевая пыль, табачный дым, винилхлорид

3.2.1. Аллергические и гиперреактивные заболевания легких

В норме иммунная система обеспечивает защиту легких от неблагоприятных воздействий, в том числе и токсикантов. Однако при воздействии некоторых ксенобиотиков ответ порой оказывается искаженным. Причиной этого могут стать вещества:

- вызывающие неспецифические вялотекущие воспалительные процессы в лёгких;

- обладающие антигенными свойствами, в том числе, способные образовывать комплексные антигены, инициирующие специфический иммунный ответ (см. раздел "Иммунотоксичность").

Итогом таких воздействий являются:

а) профессиональная астма;

б) синдром реактивной дисфункции дыхательных путей;

в) экзогенный аллергический альвеолит;

г) пневмокониоз;

д) фиброз, гранулематоз легких, вызываемый металлами, способными оказывать сенсибилизирующее действие.

От 2 до 15% случаев бронхиальной астмы в индустриально развитых странах - следствие профессионально обусловленных воздействий токсикантов. Большинство промышленных агентов, вызывающих астму, обладает аллергизирующей активностью, хотя в условиях профессиональной деятельности или неблагоприятной экологической обстановки на организм действует, помимо "основного" токсиканта, совокупность факторов (курение, длительный прием лекарственных средств, неблагоприятные климатические условия и т.д.). Высокомолекулярные вещества, содержащиеся, например, в растительной пыли, биопрепаратах (белки, пептиды, ферменты: пепсин, щелочная фосфотаза, пероксидаза, рибонуклеаза и т.д.), выделениях животных, могут вызвать аллергизацию, провоцируя образование иммуноглобулинов (IgE, IgG). Низкомолекулярные вещества, такие как ангидриды кислот (в частности фталиевый ангидрид), альдегиды (в частности - формальдегид, глютаровый альдегид), кислоты, изоцианаты, акриламид-мономер, алифатические амины, пары металлов - могут действовать в форме связанных с белками гаптенов, также вызывая гуморальный и клеточный иммунный ответ. Формированию профессиональной астмы, как правило предшествует длительный контакт с токсикантом.

Вместе с тем встречаются случаи, когда уже однократное воздействие раздражающих газов, паров, дымов, включая хлор и аммиак, в высокой концентрации приводит к гиперчувствительности дыхательных путей (синдром реактивной дисфункции дыхательных путей - СРДП). СРДП характеризуется стойким повышением чувствительности дыхательной системы к ксенобиотикам, которое формируется спустя несколько часов после воздействия, сохраняется в течение нескольких недель и проявляется бронхоспазмом при контакте с веществом. Полагают, что в основе СРДП лежит прямое разрушение токсикантами тучных клеток с высвобождением в ткани легких, содержащегося в клетках гистамина и других биологически активных веществ. У части отравленных гиперчувствительность к токсикантам сохраняется на всю жизнь. В этой связи, даже после успешного излечения пострадавшего от острого ингаляционного воздействия ксенобиотика, необходимо установить за ним медицинское наблюдение, с тем, чтобы предотвратить возможность тяжелых осложнений.

Экзогенный аллергический альвеолит представляет собой процесс, развивающийся после воздействия органической пыли, паров ангидридов кислот, изоцианатов (особенно толуолдиизоцианата), бериллия. Нередко патология возникает у сельскохозяйственных рабочих, работников птицефабрик. Клинически, заболевание напоминает остро или хронически протекающую интерстициальную пневмонию. Острая форма сопровождается лихорадкой, ознобом, кашлем, затруднением дыхания, одышкой. Процесс, как правило, разрешается в течение 24 часов. Хронический процесс может быть следствием длительного действия многих токсикантов. Он проявляется кашлем, утомляемостью, потерей веса, учащенным дыханием, признаками фиброза легких.

По современным представлениям пневмокониоз шахтеров, силикоз и асбестоз - процессы, также сопровождающиеся иммунологическими сдвигами. В результате поступления в лёгкие угольной пыли, асбеста, кремния эти вещества фагоцитируются макрофагами, что является пусковым механизмом для выделения этими клетками лизосомальных энзимов. Разрушение лёгочной ткани протеазами, выделяемыми макрофагами, приводит к постепенному её замещению соединительной тканью, то есть фиброзу легких. У лиц с хроническим силикозом при этом отмечается повышенное содержание в крови иммунных комплексов, включая ревматоидный фактор и антитела к ядрам клеток, усиленный синтез IgA. У больных асбестозом обнаруживается угнетение активности клеток-киллеров и антителозависимых цитотоксических клеток, уменьшение числа Т-лимфоцитов, повышенное содержание иммунных комплексов и иммуноглобулинов в крови.

Наконец, аллергический компонент прослеживается при профессиональной патологии лёгких у рабочих металлоплавильных цехов. Около 15 металлов обладают свойствами аллергенов. В наибольшей степени этот феномен прослеживается в клинике хронического бериллиоза, гранулематоза лёгких, вызванного алюминием, титаном, хромом, никилем.

4. Оценка пульмонотоксичности ксенобиотиков в эксперименте

Оценка пульмонотоксичности ксенобиотиков осуществляется в опытах на лабораторных животных. При этом необходимо четко определить условия воздействия изучаемых веществ (концентрация, продолжительность экспозиции и т.д.) и критерии оценки выраженности развивающегося поражения.

В настоящее время опыты, как правило, выполняют на белых крысах, кроликах, беспородных собаках (преимущественно самцах), хотя для этой цели подходит любой вид млекопитающих. Животные перед экспериментом должны содержаться в условиях вивария на обычном рационе питания.

Условия аппликации веществ следует выбирать исходя из их свойств, целей и задач исследования. В любом случае они должны быть стандартизованы.

Действие жидких веществ изучают либо в паровой фазе (летучие агенты), либо в форме аэрозолей с различной степенью дисперсности. Генерацию аэрозолей осуществляют при помощи ультразвуковых генераторов, гидравлических или пневматических распылителей. Аэрозоли твердых веществ получают путем распыления порошков или растворов веществ, а также методом термической возгонки.

Конструкция стендовой установки (камеры) для исследований должна предусматривать возможность экспонирования различных видов лабораторных животных в статическом или динамическом режимах воздействия газа, пара, аэрозоли.

Статический режим экспонирования предполагает одномоментное введение в рабочий канал установки определенного количество исследуемого вещества, после чего производится перемешивание токсиканта в воздушной смеси при помощи вентилятора и определение его исходной концентрации (С0 - мг/м3) в камере. Оптимальное время экспонирования животного в этом режиме составляет 5-20 минут. За 1-2 мин до окончания экспозиции определяют конечную концентрации токсиканта в камере (Сt).

Фактическую токсодозу вещества, воздействовавшего на экспериментальное животное, рассчитывают по формуле:

Ct = (СО + Сt) t /2, где

Ct - фактическая токсодоза, мг мин/м3;

t - время воздействия, мин.

При изучении пульмонотоксичности вещества в динамическом режиме воздействия к камере подключают источник (генератор) постоянной подачи газа, пара или аэрозоля. Продувку зараженного воздуха через камеру обычно проводят со скоростью:

- для газов - 25 л/мин.;

- для паров - 50-75 л/мин;

- для аэрозолей 150-250 л/мин.

После перемешивания вещества в камере определяют его концентрацию (С - мг/м3). Время экспозиции выбирают исходя из особенностей свойств токсиканта и целей исследования.

Фактическую токсодозу вещества, воздействовавшего на экспериментальное животное, рассчитывают по формуле:

Ct = C t, где

Ct - фактическая токсодоза, мг мин/м3;

C - концентрация вещества в камере, мг/м3;

t - время воздействия, мин.

В случае острого эксперимента, за животными, подвергшимися воздействию, в течение 2-4 суток ведут тщательное наблюдение.

Критериями оценки поражающего действия пульмонотоксикантов могут являться:

1. Количество погибших животных и распределение случаев гибели в течение определенного времени после воздействия;

2. Морфологические показатели поражения (макро- и микроскопические), регистрируемые у погибших и выведенных из эксперимента животных в различные сроки после отравления;

3. Органометрические характеристики легких, определяемые у погибших и выведенных из эксперимента животных;

4. Показатели функционального состояния органов дыхания и других органов и систем лабораторных животных;

5. Биохимические показатели.

На основе данных эксперимента определяют принятые в практике показатели токсичности исследуемых веществ (пороговые, эффективные, непереносимые, смертельные токсодозы) либо характеризуют выраженность эффекта (летальность, сроки гибели, степень повреждения легочной ткани, нарушений со стороны других органов и систем и т.д.) при фиксированной токсодозе исследуемого токсиканта.

5. Выявления пульмонотоксического действия профессиональных и экотоксикантов

Установление причинно-следственных связей между патологией дыхательной системы, выявляемой у обследуемого, и действием профессиональных неблагоприятных факторов химической природы, порой очень сложная задача. Алгоритм её решения представлен в таблице 11.

Таблица 11. Выявление профессиональных и экологических причин лёгочной патологии химической этиологии

Профессиональный анамнез: - характеристика профессиональной деятельности - потенциальные возможности воздействия токсикантов, в условиях производства
Бытовые условия: - расположение жилища, температура воздуха в помещениях, вентилируемость, строительные материалы - использование токсикантов в бытовых целях (гербициды, пестициды, средства бытовой химии и т.д.) - хобби - привычки (курение, склонность к приёму алкоголя, лекарств) - профессии членов семьи
Биологический мониторинг: - общемедицинское обследование - анализ газового состава крови - иммунологические тесты - физиологические тесты - рентгенографические исследования - анализ лёгочной ткани на содержание минералов
Обследование рабочего места: - изучение перечня токсикантов, оценка степени их опасности, потенциальной способности вызывать лёгочную патологию - обсуждение характера работы обследуемого с руководством промышленного объекта, медицинским персоналом объекта - оценка профилактических мероприятий, проводимых на объекте - анализ воздуха рабочей зоны, оценка загрязненности рабочего места

5.1. Профессиональный анамнез

Если начало профессионального заболевания отсрочено, либо характер воздействия токсиканта трудно поддается анализу, врачу необходимо получить информацию о видах работы, выполнявшейся лицом, воздействиях, которым лицо подвергалось в период работы. Необходимые данные получаются путём анализа документации или опроса обследуемого.

Важно собрать сведения о возможном воздействии токсикантов, не связанных с профессиональной деятельностью: путем длительного приёма лекарств, вследствие вредных привычек (курение), хобби и т.д. Поражение может быть следствием заноса токсиканта в жилище одним из членов семьи (работниками асбестовых производств).

5.2. Биологический мониторинг

Биологический мониторинг предполагает клинико-лабораторное обследование с привлечением рентгенографических, физиологических, иммунологических, химико-аналитических, морфологических и других методов исследования.

Примеры профессиональной патологии лёгких химической этиологии, выявляемой физиологическими методами исследования, представлены в таблице 12.

Таблица 12. Патологические состояния, сопровождающиеся нарушением функциональных проб

1. Обструктивный тип нарушений А. Отсутствует реакция на бронхолитики - бронхоэктазы (аммиак) - хронический бронхит (раздражающие дыми, угольная и иная пыль и др.) - хронические обструктивные заболевания легких - эмфизема (курение, кадмий, диоксид азота и т.д.) - обструкция верхних дыхательных путей - стеноз трахеи (следствие химического ожога дыхательных путей, новообразования) Б. Сохранена реакция на бронхолитики - профессиональная астма (острое, хроническое действие токсикантов) - синдром реактивной дисфункции дыхательных путей (острое действие токсикантов в высоких дозах)
2. Рестриктивный тип нарушений - гигантоклеточные пневмониты (кобальт) - интерстициальный фиброз (кислород, нитрофурантион, паракват и др.) - пневмокониоз (антракоз, силикоз, асбестоз)
3. Обструктивно-рестриктивный тип - облитерирующий бронхиолит (оксиды азота, диоксид серы) - бериллиоз - асбестоз - силикоз - хронический аллергический альвеолит (белковая пыль)

5.3. Обследование рабочего места

Важным этапом постановки диагноза является обследование врачом-специалистом рабочего места. В ходе обследования осуществляется осмотр производства, собираются сведения, недоступные в поликлинических условиях.

В большинстве случаев рабочие не знают всего перечня химических веществ, с которыми им приходится контактировать в процессе работы, и, следовательно, не могут в полной мере оценить сопутствующий этому риск. Перечень токсикантов, с указанием степени их опасности, является важнейшим элементом, позволяющим медицинскому работнику осуществлять контроль состояния здоровья работающих, устанавливать причинно-следственную связь между фактом воздействия и развивающейся патологией. В ряде стран существуют законы, обязывающие иметь на производствах такие перечни.

В случае необходимости выполняются замеры концентраций интересующих веществ в воздухе рабочей зоны, на рабочем месте. Собирается информация о состоянии здоровья других лиц, работающих на этом производстве.

Итогом обследования является не только уточнение диагноза, но и рекомендации по улучшению условий труда.

ГЛАВА 7.4. ГЕМАТОТОКСИЧНОСТЬ

Гематотоксичность это свойство химических веществ, действуя на организм немеханическим путём, избирательно нарушать функции клеток крови или её клеточный состав (как в сторону уменьшения, так и увеличения числа форменных элементов). Важнейшими функциями клеток крови являются: кислородтранспортная, гемостатическая, обеспечение иммунитета. Нарушение числа форменных элементов может явиться следствием прямого разрушения клеток в кровяном русле, повреждения процессов клеточного деления и созревания в кроветворных органах, поступления зрелых элементов в кровь.

Частыми проявлениями гематотоксичности являются: нарушение свойств гемоглобина (метгемоглобинемия, карбоксигемоглобинемия), анемии (в том числе гемолитические), тромбоцитопении, лейкопении, лейкемии. По большей части клеточные дискразии, вызванные токсикантами, обратимы и исчезают после прекращения действия вещества. Однако встречаются и персистирующие формы, заканчивающиеся летальным исходом в случае тяжелого повреждения костного мозга.

1. Гемопоез

Гемопоэзом называется процесс амплификации и дифференциации клеточных элементов крови, в ходе которого ограниченное количество стволовых клеток даёт начало более дифференцированным делящимся клеткам, которые, в свою очередь, превращаются в созревающие, а затем и зрелые форменные элементы. "Родоначальницей" клеток является полипотентная стволовая клетка (ПСК), при делении которой образуются клетки - предшественницы всех клеточных элементов. По завершении эмбриогенеза ПСК остается единственным элементом, отвечающим за репродукция клеток крови. В норме у взрослого человека гемопоэз осуществляется в костном мозге, который представлен кластерами гемопоэтических клеток рассеянных в эпифизах трубчатых костей, плоских костях черепа, грудине, позвонках, костях таза, рёбрах. Даже в условия экстремального гемопоэтического стресса, развивающегося например при трансплантации костного мозга, экстрамедуллярное кроветворение в печени, селезёнке, лимфатических узлах у взрослого отмечается крайне редко. Пул гемопоэтических клеток-предшественников и пул зрелых форменных элементов крови находятся в состоянии динамического равновесия, при котором гибель и разрушение зрелых клеток уравновешено постоянной продукцией и выходом в кровь молодых. В среднем, у взрослого человека в сутки разрушается и заново образуется от 200 до 400 млн. клеток крови. Повреждающее действие на процесс гемопоэза сопровождается не только гибелью, нарушением дифференциации и созревания клеток, но и активацией значительной части стволовых клеток, в нормальных условиях находящихся в состоянии покоя.

2. Нарушение функций гемоглобина

Одна из важнейших функций крови - транспорт кислорода от легких к тканям. Транспорт кислорода осуществляется двумя способами:

- в форме соединения - гемоглобином;

- в форме раствора - плазмой.

В растворенном состоянии плазмой крови переносится около 0,2 мл О2 на 100 мл крови. В связанной с гемоглобином форме эритроциты переносят в 100 раз больше кислорода (20 мл на 100 мл крови). 1 г гемоглобина способен обратимо связать около 1,5 мл О2, а в 100 мл крови содержится около 14 - 16 г гемоглобина.

В результате взаимодействия кислорода с гемоглобином образуется нестойкое соединение оксигемоглобин (HbО) (рисунок 1).

Рисунок 1. Кривая насыщения гемоглобина кислородом

При повышении парциального давления кислорода в среде (сатурация крови в легких) содержание НbО увеличивается и при 100 mmHg приближается к 100%. При понижении парциального давления О2 (в тканях) НbО распадается, при этом кислород выделяется в среду и утилизируется тканями организма. Процесс насыщения и рассыщения гемоглобина О2 описывается S-образной кривой. Такая форма зависимости между рО2 и %НbО есть следствие явления взаимодействия субъединиц гемоглобина в молекулярном комплексе (гем-гем взаимодействие), физиологический смысл которого - обеспечение максимально возможного выделения кислорода в ткани при незначительном различии парциального давления газа в крови и тканях (рО2 крови - около 40 mmHg; рО2 тканей - около 20 mmHg; выделяется около 50% связанного кислорода).





Дата публикования: 2014-11-04; Прочитано: 266 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...