Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Окисление пировиноградной кислоты. Функционирование пируватдегидрогеназного комплекса. Роль коферментов. Регуляция процесса



Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».

На I стадии этого процесса пируват (рис. 10.8) теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидроли-поилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.

На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е2. При участии ферментадигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+.

Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, ли-поамид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД).

Е1 - пируватдегидрогеназа; Е2 - ди-гидролипоилацетилтрансфсраза; Е3 -дигидролипоилдегидрогеназа; цифры в кружках обозначают стадии процесса.

Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.

Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:

Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2.

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Образовавшийся в процессе окислительного декарбоксилирования аце-тил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбо-ксилирование пирувата, происходит в митохондриях клеток.

30. 31. Цикл лимонной кислоты. Биологическая роль. Ферментное обеспечение. Энергетический выход. Образование NADH, FADH2 и GTP в цикле лимонной кислоты. Регуляция цикла

На начальной стадии цикла лимонной кислоты ацетил-КоА взаимодействует с щавелево-уксусной кислотой, образуя лимонную кислоту. Коэнзим А отделяется от ацетил-КоА и может использоваться вновь для образования новых молекул ацетил-КоА из пировиноградной кислоты.

Ацетильная часть может использоваться, становясь составной частью молекулы лимонной кислоты. На протяжении последующих стадий цикла лимонной кислоты в реакцию вступают молекулы воды, как показано в левой части рисунка. В итоге образуются углекислый газ и атомы водорода.

Суммарный итог реакций цикла лимонной кислоты. В итоге метаболических процессов из каждой исходной молекулы глюкозы получаются 2 молекулы ацетил-КоА, вступающие в реакции цикла лимонной кислоты наряду с 6 молекулами воды. В результате образуются 4 молекулы углекислого газа, 16 атомов водорода и 2 молекулы коэнзима А. Кроме того, образуются 2 молекулы АТФ.

В цикле лимонной кислоты только одна химическая реакция (во время преобразования а-кетоглутаровой кислоты в сукциниловую кислоту) сопровождается образованием молекулы АТФ. Таким образом, образующиеся из каждой молекулы глюкозы 2 молекулы ацетил-КоА проходят через цикл Кребса, суммарно при этом образуются 2 молекулы АТФ.
Влияние дегидрогеназ и никотинамидадениндинуклеотида на выделение атомов водорода в цикле лимонной кислоты.

Итак, в цикле лимонной кислоты в итоге различных химических реакций выделяются атомы водорода: 4 — во время гликолиза, 4 — при образованием ацетил-КоА из пировиноградной кислоты и 16 — в цикле лимонной кислоты. В итоге общее количество образующихся из каждой молекулы глюкозы атомов водорода равняется 24. Они высвобождаются попарно в момент образования, их высвобождение катализируется специфическими ферментами, называемыми дегидрогеназами.

Выделяющиеся при этом атомы водорода не теряются во внутриклеточном пространстве: 20 из 24 атомов водорода сразу связываются с никотинамидадениндинуклеотидом (НАД+) — производным витамина ниацина.

Эта реакция невозможна без участия специфических дегидрогеназ, равно как при отсутствии НАД+, действующих в качестве переносчиков атомов водорода. Как свободные атомы водорода, так и связанные с НАД+ последовательно вступают в реакции окисления, что сопровождается образованием огромного количества АТФ.

Главная функция цикла лимонной кислоты - окисление ацетогруппы, включающейся в этот цикл в форме молекул ацетил-СоА. Процесс этот носит циклический характер, поскольку ацетогруппа окисляется не сразу, а лишь после того, как она ковалентно присоединится к более крупной молекуле - оксалоаиетату, которая регенерируется после каждого оборота цикла. Как показано на рис. 2-23, цикл начинается с реакции ацетил-СоА с оксалоацетатом, приводящей к образованию молекулы трикарбоновой кислоты, называемой лимонной кислотой (или цитратом). Затем следует серия реакций, в которых два из шести атомов углерода цитрата окисляются до СО2, образуя молекулу оксалоацетата - исходного продукта для нового цикла. (Поскольку два новых атома углерода, присоединяемых в каждом цикле, входят не в ту часть молекулы цитрата, которая окисляется в данном цикле до СО2, должно пройти несколько циклов, прежде чем подойдет их очередь окислиться.) Молекулы СО2, образующиеся в подобных реакциях, затем диффундируют из митохондрий (или из бактерий) и покидают клетку.
Энергия, высвобождающаяся при окислении связей С—Н и С—С цитрата, потребляется несколькими различными способами в цикле лимонной кислоты. В одной из реакций цикла (сукцинил-СоА > сукцинат) высокоэнергетическая фосфатная связь образуется под действием механизма, сходного с тем, который мы уже рассмотрели в случае гликолиза. (Хотя в реакции цикла образуется не АТР, a GTP, все нуклеозидтрифосфаты равноценны в энергетическом отношении благодаря реакциям обмена типа ADP + GTR АТР + GDP.) Оставшаяся часть энергии, полученной при окислении, расходуется на перевод молекул-переносчиков водорода (или гидрид-ионов) в восстановленную форму; в каждом обороте цикла три молекулы NAD+ превращаются в NADH, а одна молекула флавинадениндинуклеотида (FAD) - в FADH2. Энергия, переносимая на таких молекулах- переносчиках активированными атомами водорода, используется в реакциях окислительного фосфорилирования; для осуществления последних (они будут подробно рассмотрены ниже) необходим молекулярный кислород атмосферы.
Дополнительные атомы кислорода, необходимые для образования СО2 из включающейся в цикл лимонной кислоты ацетильной группы, поставляются не молекулярным кислородом, а молекулой воды. В каждом цикле расщепляются три молекулы воды, атомы кислорода которых используются для образования СО2. Некоторые из атомов водорода молекул воды связываются с молекулами субстрата, переходя в более высокое энергетическое состояние, и затем переносятся (вместе с атомами водорода ацетогруппы) к таким молекулам-переносчикам, как NADH.
В эукариотических клетках митохондрия - это центр, к которому ведут все катаболические пути независимо от того, что служит для них первоначальным субстратом-сахара, жиры или белки. Объясняется это тем, что не только пируват, но и жирные кислоты, равно как и некоторые аминокислоты, тоже поступают из цитозоля в митохондрии, где они превращаются в ацетил-СоА или в один из промежуточных продуктов цикла лимонной кислоты. Митохондрия служит также отправной точкой биосинтетических реакций, поскольку в ней образуются такие жизненно важные углеродсодержащие промежуточные продукты, как оксалоацетат и 2-оксоглутарат. Эти соединения переносятся из митохондрии обратно в цитозоль, где они используются в качестве предшественников таких важнейших молекул клетки, как, например, аминокислоты.

а) 1 молекула NADH образуется в реакции изоцитрат®a-кетоглутарат;

б) 1 молекула NADH образуется в реакции a-кетоглутарат® сукцинил-СоА;

в) 1 молекула NADH образуется в реакции L-малат® оксалоацетат;

г) 1 молекула FADH2 образуется в реакции сукцинат® фумарат;

д) 1 молекула GTP образуется в реакции сукцинил-СоА® сукцинат, затем она отдает свою фосфатную группу на образование молекулы АТР.





Дата публикования: 2015-11-01; Прочитано: 3381 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...