Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ядерні вибухи



3.2.1. Класифікація ядерних вибухів

Ядерна зброя розроблена в США під час Другої світової війни в основному зусиллями європейських вчених (Енштейн, Бор, Фермі та ін.). Перше випробування цієї зброї відбулося у США на полігоні Аламогордо 16 липня 1945 р. (в пей час у переможеній Німеччині проходила Потсдамська конференція). А лише через 20 днів, 6 серпня 1945 р., на японське місто Хіросіму без усякої військової потреби та доцільності була скинута атомна бомба ко­лосальної для того часу потужності - 20 кілотон. Через три дні, 9 серпня 1945 p., атомному бомбардуванню було піддане друге японське місто - Нагасакі. Наслідки ядерних вибухів були жах­ливі. У Хіросімі із 255 тис. жителів було вбито чи поранено майже 130 тис. чоловік. Із майже 200 тис. мешканців Нагасакі було ура­жено понад 50 тис. осіб.

Потім ядерна зброя була виготовлена та випробовувалася в СРСР (1949), у Великобританії (1952), у Франції (1960), у Китаї (1964). Нині у науково-технічному відношенні до виробництва ядерної зброї готові понад 30 держав світу.

Тепер існують ядерні заряди, котрі використовують реакцію поділу урану-235 та плутонія-239 і термоядерні заряди, в яких використовується (під час вибуху) реакція синтезу. При захоп­ленні одного нейтрона ядро урану-235 ділиться на два осколки, виділяючи гамма-кванти та ще два нейтрони (2,47 нейтрона для урану-235 та 2,91 нейтрона для плутонію-239). Якщо маса урану більша за третину, то ці два нейтрони ділять ще два ядра, виділя­ючи вже чотири нейтрони. Після поділу наступних чотирьох ядер виділяються вісім нейтронів і т.д. Відбувається ланцюгова реак­ція, яка призводить до ядерного вибуху. Класифікація ядерних вибухів:

за типом заряду:

—ядерні (атомні) - реакція поділу;

—термоядерні - реакція синтезу;

—нейтронні — великий потік нейтронів;

—комбіновані.

зі призначенням:


—випробувальні;

—у мирних цілях;

—у воєнних цілях;

—за потужністю:

—надмалі (менше ніж 1 тис. т тротилу);

—малі (1 — 10 тис. т);

—середні (10—100 тис. т);

—великі (100 тис. т -1 Мт);

—надвеликі (понад 1 Мт).

за видом вибуху:

—висотний (понад 10 км);

—повітряний (світлова хмара не сягає поверхні Землі);

—наземний;

—надводний;

—підземний;

—підводний.

Уражаючі фактори ядерного вибуху. Уражаючими факторами ядерного вибуху є:

—ударна хвиля (50 % енергії вибуху);

—світлове випромінювання (35 % енергії вибуху);

—проникаюча радіація (45 % енергії вибуху);

—радіоактивне зараження (10 % енергії вибуху);

—електромагнітний імпульс (1% енергії вибуху);

Ударна хвиля (УХ) (50 % енергії вибуху). УХ - це зона сильного стиснення повітря, яке поширюється із надзвуковою швидкістю на всі боки від центру вибуху. Джерелом ударної хвилі є високий тиск у центрі вибуху, що досягає 100 млрд кПа. Продукти вибуху, а також дуже нагріте повітря, розширюючись, стискають оточу­ючий шар повітря. Цей стиснутий шар повітря також стискає на­ступний шар. Таким чином тиск передається від одного шару до іншого, створюючи УХ. Передній кордон стиснутого повітря на­зивається фронтом УХ.

Основними параметрами УХ є:

—надмірний тиск;

—швидкісний напір;

—час дії ударної хвилі.

Надмірний тиск - це різниця між максимальним тиском у фронті УХ та атмосферним тиском (рис. 22).

Я.І. Бедрій. Безпека життєдіяльності


Швидкісний напір повітря - це динамічне навантаження, яке створює потік повітря, позначається Р, вимірюється у кПа. Ве­личина швидкісного напору повітря залежить від швидкості та густини повітря за фронтом хвилі і тісно пов'язана із значенням максимального надмірного тиску ударної хвилі. Швидкісний напір помітно діє при надмірному тиску понад 50 кПа.

Час дії ударної хвилі (надмірного тиску) вимірюється у се­кундах. Чим більший час дії, тим більша уражаюча дія УХ. УХ ядерного вибуху середньої потужності (10—100 кт) проходить 1000 м за 1,4 с; 2000 м за 4 с; 5000 м - за 12 с. УХ уражає людей та руйнує будинки, споруди, об»єкти та техніку зв'язку.

На незахишених людей ударна хвиля впливає безпосередньо та опосередковано (опосередковані ураження - це ураження, які завдаються людині уламками будинків, споруд, уламками скла та іншими предметами, які під дією швидкісного напору повітря переміщаються з великою швидкістю). Травми, які виникають внаслідок дії ударної хвилі, поділяють на:

- легкі, характерні для РФ=20—40 кПа;

- середні, характерні для РФ=40—60 кПа:

- важкі, характерні для РФ=60-100 кПа;

- дуже важкі, характерні для РФ вище 100 кПа.

При вибуху потужністю до 1 Мт незахищені люди можуть отримати легкі травми, знаходячись від епіцентру вибуху за 4,5— 7 км, важкі - за 2-4 км.

Для захисту від УХ використовуються спеціальні сховища, а також підвали, підземні виробки, шахти, природні укриття, склад­ки місцевості та ін.

Об'єм та характер руйнування будинків та споруд залежить від потужності та виду вибуху, відстані від епіцентру вибуху, міцності та розмірів будинків та споруд. Із наземних будинків та споруд найстійкішими є монолітні залізобетонні споруди, будин­ки із металевим каркасом та споруди антисейсмічної конструкції. При ядерному вибуху потужністю 5 Мт залізобетонні конструкції руйнуватимуться у радіусі 6,5 км, цегляні будинки - до 7,8 км, Дерев'яні будуть повністю зруйновані у радіусі 18 км.

УХ має властивість проникати у приміщення крізь віконні та Дверні отвори, викликаючи руйнування перегородок та апарату­ри. Технологічне обладнання стійкіше і руйнується головним чи-

ном внаслідок обвалення стін та перекриття будинків, в яких воно змонтоване.

Світлове випромінювання (35 % енергії вибуху). Світлове вип­ромінювання (СВ) є електромагнітним випромінюванням в уль­трафіолетовій, видимій та інфрачервоній областях спектра. Дже­релом СВ є світлова область, яка поширюється із швидкістю світла (300 000 км/с). Час існування світної області залежить від потуж­ності вибуху та становить для зарядів різних калібрів: надмалого калібру - десяті частини секунди, середнього - 2-5 с, надвели­кого - декілька десятків секунд. Розмір світної області для над­малого калібру - 50-300 м, середнього 50—1000 м, надвеликого -декілька кілометрів.

Основним параметром, що характеризує СВ, є світловий імпульс. Вимірюється у калоріях на 1 см2 поверхні, розташованої перпендикулярно напрямку безпосереднього випромінювання, а також у кілоджоулях на м2:

1 кал/см2 = 42 кДж/м2.

Залежно від величини сприйнятого світлового імпульсу та глибини ураження шкірного покриву у людини виникають опі­ки трьох ступенів:

- опіки І ступеня характеризуються почервонінням шкіри, припухлістю, болючістю, спричинюються світловим імпульсом 100-200 кДж/м2;

- опіки II ступеня (пухирі) виникають при світловому імпульсі 200...400 кДж/м2;

- опіки III ступеня (виразки, змертвіння шкіри) з'являються при величині світлового імпульсу 400-500 кДж/м2.

Велика величина імпульсу (понад 600 кДж/м2) спричинює об-вуглення шкіри.

Під час ядерного вибуху 20 кт опіки І ступеня будуть спосте­рігатися у радіусі 4,0 км, II ступеня — у радіусі 2,8 км, III ступеня — у радіусі 1,8 км.

При потужності вибуху 1 Мт ці відстані збільшуються до 26,8 км, 18,6 км, та 14,8 км відповідно.

СВ поширюється прямолінійно та не проходить крізь непро­зорі матеріали. Тому будь-яка перешкода (стіна, ліс, броня, гус­тий туман, пагорби тощо) здатна утворити зону тіні, захищає від світлового випромінювання.


Найсильнішим ефектом СВ є пожежі. На розмір пожеж впли­вають такі чинники, як характер та стан забудови.

При щільності забудови понад 20% осередки пожежі можуть злитися в одну суцільну пожежу.

Втрати від пожеж у Другій світовій війні становили 80%. При відомому бомбардуванні Гамбурга одночасно підпалювалося 16 тис. будинків. Температура у районі пожеж сягала 800°С.

СВ значно посилює дію УХ.

Проникаюча радіація (45% енергії вибуху) спричинюється ви­промінюванням та потоком нейтронів, які поширюютьсяна де­кілька кілометрів навкруги ядерного вибуху, іонізуючи атоми цього середовища. Ступінь іонізації залежить від дози випром­інювання, одиницею вимірювання якої служить рентген (в 1 см сухого повітря за температуру та тиску 760 мм рт. ст. утворюєть­ся близько двох мільярдів пар іонів). Іонізуюча здатність нейт­ронів оцінюється в екологічних еквівалентах рентгена (Бер — доза нейтронів, вплив яких дорівнює впливові рентгена випро­мінювання).

Вплив проникаючої радіації на людей викликає у них проме­неву хворобу. Променева хвороба І ступеня (загальна слабкість, нудота, запаморочення, спітнілість) розвивається здебільшого при дозі 100-200 рад.

Променева хвороба II ступеня (блювота, різкий головний біль) виникає при дозі 250-400 рад.

Променева хвороба III ступеня (50% помирає) розвивається при дозі 400-600 рад.

Променева хвороба IV ступеня (здебільшого настає смерть) виникає при опроміненні понад 600 рад.

При ядерних вибухах малої потужності вплив проникаючої радіації значніший, ніж УХ та світлового опромінювання. Із збільшенням потужності вибуху відносна частка уражень прони­каючої радіації зменшується, оскільки зростає число травм та опіків. Радіус ураження проникаючою радіацією обмежується 4— 5 км незалежно від збільшення потужності вибуху.

Проникаюча радіація суттєво впливає на ефективність робо­ти радіоелектронної апаратури та систем зв'язку. Імпульсне вип­ромінювання, потік нейтронів порушують функціонування ба­гатьох електронних систем, особливо тих, що працюють в імпуль-


сному режимі, викликаючи перерви в електропостачанні, зами­кання в трансформаторах, підвищення напруги, перекручування форми та величини електричних сигналів.

При цьому випромінювання викликає тимчасові перерви у роботі апаратури, а потік нейтронів - незворотні зміни.

Для діодів при щільності потоку 1011 (германієві) та 1012 (кремнієві) нейтронів/см2 змінюються характеристики прямого та зворотного струмів.

У транзисторах зменшується коефіцієнт підсилювання стру­му та збільшується зворотний струм колектора. Кремнієві тран­зистори стійкіші і зберігають свої підсилюючі властивості при потоках нейтронів понад 1014 нейтронів/см2.

Електровакуумні прилади стійкіші та зберігають свої власти­вості до щільності потоку 571015 - 571016 нейтронів/ см2.

Резистори та конденсатори стійкі до щільності 1018 нейт­ронів/см2. Потім у резисторів змінюється провідність, у кон­денсаторів збільшуються витоки та втрати, особливо для елект­ролічильних конденсаторів.

Радіоактивне зараження (до 10% енергіїядерного вибуху) вини­кає через наведену радіацію, випадання на землю відламків по­ділу ядерного заряду та частини залишкового урану-235 чи плу-тонію-239.

Радіоактивне зараження місцевості характеризується рівнем радіації, який вимірюється у рентгенах за годину.

Випадання радіоактивних речовин продовжується при русі радіоактивної хмари під впливом вітру, внаслідок чого на поверхні землі утворюється радіоактивний слід у вигляді смуги зараженої місцевості. Довжина сліду може сягати кількох десятків кілометрів і навіть сотень кілометрів, а ширина - десятків кілометрів.

Залежно від ступеня зараження та можливих наслідків опро­мінення виділяють 4 зони: помірного, сильного, небезпечного та надзвичайно небезпечного зараження.

Для зручності вирішення проблеми оцінки радіаційного ста­ну межі зон прийнято характеризувати рівнями радіації на 1 год. після вибуху (Ро) і 10 год. після вибуху Р10. Також встановлюють значення доз гамма-випромінювання Д, які одержують за час від 1 год. після вибуху до повного розпаду радіоактивних речовин.

Зона помірного зараження (зона А) - Д = 40,0-400 рад. Рівень радіації на зовнішній межі зони Ро = 8 Р/год, Р10 = 0,5 Р/год. В


зоні А роботи на об'єктах, як правило, не зупиняються. На відкритій місцевості, розташованій у середині зони чи у її внутрішній межі, роботи припиняються на декілька годин.

Зона сильного зараження (зона Б) - Д = 4000-1200 рад. Рівень радіації на зовнішній межі Ро = 80 Р/год, Р10 = 5 Р/год. Роботи зупиняються на 1 добу. Люди ховаються у сховищах чи евакуйо­вуються.

Зона небезпечного зараження (зона В) — Д = 1200-4000 рад. Рівень радіації на зовнішній межі Ро = 240 Р/год, Р10 = 15 Р/год. У цій зоні роботи на об'єктах зупиняються від 1 до 3—4 діб. Люди евакуйовуються чи ховаються в захисних спорудах.

Зона надзвичайно небезпечного зараження (зона Г) на зовнішній межі Д = 4000 рад. Рівні радіації Ро = 800 Р/год, Р10 = 50 Р/год. Роботи зупиняються на декілька діб та поновлюються після спаду рівня радіації до безпечного значення.

Для прикладу на рис. 23 показані розміри зон А, Б, В, Г, які утворюються під час вибуху потужністю 500 кт та швидкості вітру 50 км/год.


Характерною особливістю радіоактивного зараження внаслі­док ядерних вибухів є порівняно швидкий спад рівнів радіації (табл. 11).


Великий вплив на характер зараження справляє висота вибу­ху. При висотних вибухах радіоактивна хмара піднімається на значну висоту, зноситься вітром та розсіюється на великому про­сторі.

Таблиця 12 Залежність рівня радіації від часу після вибуху

Час після вибуху, год                          
Рівень радіації, %   43,5 27,0 19,0 14,5 11,6 9,7 7,15 6,3 5,05 3,9 2,7 0,96

Перебування людей на зараженій місцевості спричинює їх оп­ромінення радіоактивними речовинами. Крім того, радіоактивні частки можуть потрапляти всередину організму, осідати на відкри­тих ділянках тіла, проникати в кров крізь рани, подряпини, вик­ликаючи той чи інший ступінь променевої хвороби.

Для умов воєнного часу безпечною дозою загального однора­зового опромінення вважаються такі дози: протягом 4 діб - не більше ніж 50 рад, 10 діб - не більше ніж 100 рад, 3 місяці — 200 рад, за рік - не більше 300 рад.

Для роботи на зараженій місцевості використовуються засо­би індивідуального захисту, при виході із зараженої зони прово­диться дезактивація, а люди підлягають санітарній обробці.

Для захисту людей використовуються сховища та укриття. Кожна споруда оцінюється коефіцієнтом послаблення Кпосл, під яким розуміють число, що вказує, у скільки разів доза опромі­нення в сховищі менша від дози опромінення на відкритій місце­вості. Для кам'яних будинків К - 10, автомобіля - 2, танка -

ПОСЛ.

10, підвалів — 40, для спеціально обладнаних сховищ він може бути ще більшим (до 500).

Електромагнітний імпульс (ЕМІ) (1 % енергії вибуху) являє со­бою короткочасний сплеск напруги електричного і магнітного полів та струмів внаслідок руху електронів від центру вибуху, що виникають внаслідок іонізації повітря. Амплітуда ЕМІ дуже швид­ко зменшується по експоненті. Тривалість імпульсу дорівнює сотій частині мікросекунди (рис. 25). За першим імпульсом внас­лідок взаємодії електронів з магнітним полем Землі виникає дру­гий, триваліший імпульс (рис. 26).




ЕМІ безпосередньо на тіло людини не впливає.

При оцінці впливу на електронну апаратуру ЕМІ потрібно вра­ховувати й одночасний вплив ЕМІ - випромінювання. Під впли­вом випромінювання збільшується провідність транзисторів, мікросхем, а під впливом ЕМІ відбувається їх пробивання. ЕМІ є надзвичийно ефективним засобом для пошкодження електрон­ної апаратури. У програмі СОІ передбачене проведення спеціаль­них вибухів, при яких створюється ЕМІ, достатній для знищення електроніки.

3.2.2. Особливості вибухів нейтронної зброї

Нейтронною зброєю умовно називають ядерні та термоядерні боєприпаси малої та надмалої потужності (2—0,5 кг).

Уражаючі чинники: проникаюча радіація, ударна хвиля, світлове випромінювання та радіоактивне зараження (розподіл у відсотках див. в табл. 12).

Таблиця 12 Уражаючі фактори нейтронної зброї

Вид заряду ПР УХ СВ РЗ
Поділ        
Синтез        

Головний уражаючий фактор НЗ - проникаюча радіація -по­токи нейтронів та інших часток з енергією до 14 МеВ. Під час вибу­ху нейтронного боєприпасу потужністю 1 кт у радіусі 500 м усе буде зруйноване УХ та СВ. У радіусі 1 км гинуть люди протягом короткого часу від ПР, в радіусі 2 км (важка променева хвороба) люди гинуть протягом декількох тижнів. Зона дії ПР у 2 рази більша, ніж у звичайної ядерної зброї, а доза опромінення більша у 10 разів.





Дата публикования: 2015-10-09; Прочитано: 615 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...