Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Критерий Гурвица



Стараясь занять наиболее уравновешенную позицию, Гурвиц предположил оценочную функцию, которая находится где-то между точкой зрения крайнего оптимизма и крайнего пессимизма:

eir = { C eij + (1- C) eij },

где С – весовой множитель.

Правило выбора согласно критерию Гурвица, формируется следующим образом:

матрица решений дополняется столбцом, содержащим среднее взвешенное наименьшего и наибольшего результатов для каждой строки. Выбираются только те варианты, в строках которых стоят наибольшие элементы eir этого столбца.

При С =1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий “азартного игрока”

eir = eij,

т.е. мы становимся на точку зрения азартного игрока, делающего ставку на то, что «выпадет» наивыгоднейший случай.

В технических приложениях сложно выбрать весовой множитель С, т.к. трудно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего С:= 1/2.

Критерий Гурвица применяется в случае, когда:

1) о вероятностях появления состояния Fj ничего не известно;

2) с появлением состояния Fj необходимо считаться;

3) реализуется только малое количество решений;

4) допускается некоторый риск.

Сведение матричной игры к задаче линейного программирования

Предположим, что цена игры положительна (u > 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицы выигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроков не изменяются.

Итак, пусть дана матричная игра с матрицей А порядка m хn. Согласно свойству 7 оптимальные смешанные стратегии х = (х1,..., хm), y = (y1,..., yn) соответственно игроков 1 и 2 и цена игры u должны удовлетворять соотношениям.

Разделим все уравнения и неравенства в (1) и (2) на u (это можно сделать, т.к. по предположению u > 0) и введём обозначения:

, ,

Тогда (1) и (2) перепишется в виде:

, , , ,

, , , .

Поскольку первый игрок стремится найти такие значения хi и, следовательно, pi, чтобы цена игры u была максимальной, то решение первой задачи сводится к нахождению таких неотрицательных значений pi , при которых

, .

Поскольку второй игрок стремится найти такие значения yj и, следовательно, qj, чтобы цена игры u была наименьшей, то решение второй задачи сводится к нахождению таких неотрицательных значений qj, , при которых

, .

Формулы (3) и (4) выражают двойственные друг другу задачи линейного программирования (ЛП).

Решив эти задачи, получим значения pi , qj и u. Тогда смешанные стратегии, т.е. xi и yj получаются по формулам:

Пример. Найти решение игры, определяемой матрицей.

Решение. При решении этой игры к каждому элементу матрицы А прибавим 1 и получим следующую матрицу

Составим теперь пару взаимно-двойственных задач:

Решим вторую из них

Б.п. q1 q2 q3 q4 q5 q6 Решение å Отношение
  -1 -1 -1         -3  
q4                
q5                
q6                
Б.п. q1 q2 q3 q4 q5 q6 Решение å Отношение
    -1              
q4                
q3                
q6                
Б.п. q1 q2 q3 q4 q5 q6 Решение å Отношение
         
q2          
q3                  
q6          

Из оптимальной симплекс-таблицы следует, что

(q1, q2, q3) = (0; ; 1),

а из соотношений двойственности следует, что

(p1, p2, p3) = (; 1; 0).

Следовательно, цена игры с платёжной матрицей А1 равна

. ,

а игры с платёжной матрицей А:

.

При этом оптимальные стратегии игроков имеют вид:

Х = (х1, х2, х3) = (1; uр2; uр3) = =

Y = (y1, y2, y3) = (uq1; uq2; uq3) = = .





Дата публикования: 2015-10-09; Прочитано: 380 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...