Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Раздел 3 Машинно-независимые свойства ОС



Тема 3.1 Файловая система

1. Схематическая структура ФС

Файловая система – это набор спецификаций и соответствующее им программное обеспечение, которое отвечает за создание, удаление, организацию, чтение, запись, модификацию и перемещение файлов информации, а также за управление доступом к файлам и за управление ресурсами, которые используются файлами. Файловая система определяет способ организации данных на диске (или на другом носителе).

2. Основные типы файлов.

Текстовые файлы

- имя.txt – файл созданный в текстовом редакторе Блокнот или ему подобных

- имя.doc - файл созданный в текстовом редакторе Word

Аудио файлы

- имя.mp3 наиболее распространенный формат. Форматов аудиофайлов довольно много и нет смысла их все здесь перечислять.

Видео файлы

- имя.Avi, имя.flv, имя.mp4 и т.д. Также существует много форматов.

Графические файлы

- имя.jpg, имя.bmp, имя.gif и т.д. В них хранятся фотографии, картинки, рисунки и т.п.

Исполняемые файлы

- имя.exe, имя.com. Такое расширение имеют бинарные файлы, то есть файлы программ переведенные в машинный код.

Архивные файлы

- имя.rar, имя.zip. Для уменьшения места, занимаемого фалом на диске, а также для резервной копии важных данных.

3. Правила для задания на диске имени файла и каталога

Информация на магнитных дисках размещается и передается блоками. Каждый блок называется сектором и располагается на концентрических дорожках поверхности диска. Группа дорожек одного радиуса, расположенных на поверхностях магнитных дисков, образуют цилиндры. Каждый сектор состоит из поля данных и поля служебной информации, ограничивающей и идентифицирующей его. Размер сектор (объем поля данных) устанавливается контроллером или драйвером.

4. Имя файла и каталога.

Имя файла — строка символов, однозначно определяющая файл в некотором пространстве имён файловой системы (ФС), обычно называемом каталогом, директорией или папкой. Имена файлов строятся по правилам, принятым в той или иной файловой и операционной системах (ОС). Многие системы позволяют назначать имена как обычным файлам, так и каталогам и специальным объектам (символическим ссылкам, блочным устройствам и т. п.).

Имя файла является частью полного имени файла, также называемого полным или абсолютным путём к файлу. Полное имя может включать следующие компоненты:

протокол или способ доступа (http, ftp, file и т. п.);

имя или адрес компьютера, узла сети (wikipedia.org, 207.142.131.206, \\MYCOMPUTER, SYS: и т. п.);

устройство хранения, диск (C:, /, SYSLIB и т. п.);

путь к каталогу (/usr/bin, \TEMP, [USR.LIB.SRC] и т. п.);

собственно имя файла, которое может содержать его расширение (.txt,.exe,.COM и т. п.);

версия или номер ревизии

Имя файла необходимо для того, чтобы к файлу мог обратиться пользователь. В одном каталоге не может быть двух файлов с одинаковыми именами (некоторые файловые системы регистронезависимы, что оставляет возможность для создания файлов, имена которых отличаются регистром символов).

Имя файла состоит из двух частей, разделенных точкой:

Название (до точки, часто также называют именем);

Расширение (необязательная часть).

Тема 3.2 Планирование процессов

1. Виды планирования

Планирование заданий, процессов и потоков

Основная цель планирования вычислительного процесса заключается в распределении времени процессора (нескольких процессоров) между выполняющимися заданиями пользователей таким образом, чтобы удовлетворять требованиям, предъявляемым пользователями к вычислительной системе. Такими требованиями могут быть, как это уже отмечалось, пропускная способность, время отклика, загрузка процессора и др.

Все виды планирования, используемые в современных ОС, в зависимости от временного масштаба, делятся на долгосрочное, среднесрочное, краткосрочное и планирование ввода-вывода. Рассматривая частоту работы планировщика, можно сказать, что долгосрочное планирование выполняется сравнительно редко, среднесрочное несколько чаще. Краткосрочный планировщик, называемый часто диспетчер (dispatcher), обычно работает, определяя, какой процесс или поток будет выполняться следующим. Ниже приведен перечень функций, выполняемых планировщиком каждого вида.

Вид планирования Выполняемые функции

Долгосрочное Решение о добавлении задания (процесса) в пул выполняемых в системе

Среднесрочное Решение о добавлении процесса к числу процессов, полностью или частично размещенных в основной памяти

Краткосрочное Решение о том, какой из доступных процессов (потоков) будет выполняться процессором

Планирование ввода-вывода Решение о том, какой из запросов процессов (потоков) на операцию ввода-вывода будет выполняться свободным устройством ввода-вывода

Место планирования в графе состояний и переходов процессов показано на рис. 5.9. В большинстве операционных систем универсального назначения планирование осуществляется динамически (on-line), т.е. решения принимаются во время работы системы на основе анализа текущей ситуации, не используя никаких предложений о мультипрограммной смеси. Найденное оперативно решение в таких условиях редко бывает оптимальным.

Рис. 5.9. Место планирования в графе процессов

Другой тип планирования – статический (предварительный), может быть использован только в специализированных системах с заданным набором задач (заранее определенным), например, в управляющих вычислительных системах или системах реального времени. В этом случае статический планировщик (или предварительный планировщик) принимает решение не во время работы системы, а заранее (off-line). Результатом его работы является расписание – таблица, в которой указано, какому процессу, когда и на какое время должен быть предоставлен процессор. При этом накладные расходы ОС на исполнение расписания значительно меньше, чем при динамическом планировании.

Краткосрочный планировщик (диспетчер) реализует найденное решение, т.е. переключает процессор с одного процесса (потока) на другой. Он вызывается при наступлении события, которое может приостановить текущий процессор или предоставить возможность прекратить выполнение данного процесса (потока) в пользу другого. Примерами этих событий могут быть:

прерывание таймера;

прерывание ввода-вывода;

вызовы операционной системы;

сигналы.

Среднесрочное планирование является частью системы свопинга. Обычно решение о загрузке процесса в память принимается в зависимости от степени многозадачности (например, OS MFT, OS MVT). Кроме того, в системе с отсутствием виртуальной памяти среднесрочное планирование тесно связано с вопросами управления памятью.

Диспетчеризация сводится к следующему:

сохранение контекста текущего потока, который требуется сменить;

загрузка контекста нового потока, выбранного в результате планирования;

запуск нового потока на выполнение.

Поскольку переключение контекстов существенно влияет на производительность вычислительной системы, программные модули ОС выполняют эту операцию при поддержке аппаратных средств процессора.

В мультипрограммной системе поток (процесс, если операционная система работает только с процессами) может находиться в одном из трех основных состояний:

выполнение – активное состояние потока, во время которого поток обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;

ожидание – пассивное состояние потока, находясь в котором, поток заблокирован по своим внутренним причинам (ждет осуществления некоторого события, например, завершения операции ввода-вывода, получения сообщения от другого потока или освобождения какого-либо необходимого ему ресурса);

готовность – также пассивное состояние потока, но в этом случае поток заблокирован в связи с внешним по отношению к нему обстоятельством (имеет все требуемые ресурсы, готов выполняться, но процессор занят выполнением другого потока).

В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятом в данной операционной системе.

В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в остальных состояниях – несколько. Эти потоки образуют очереди, соответственно, ожидающих и готовых потоков. Очереди организуются путем объединения в списки описателей отдельных потоков. С самых общих позиций все множество алгоритмов планирования можно разделить на два класса: вытесняющие и не вытесняющие алгоритмы планирования.

Не вытесняющие (non-preemptive) алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по своей инициативе, не отдает управление операционной системе, для того чтобы она выбрала из очереди готовый к выполнению поток.

Вытесняющие (preemptive) алгоритмы – это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого потока принимается операционной системой, а не активной задачей.

В первом случае механизм планирования распределяется между операционной системой и прикладными программами. Во втором случае функции планирования потоков целиком сосредоточены в операционной системе.

Недостатком первого типа алгоритмов планирования является необходимость разработки такого приложения, которое будет "дружественным" по отношению к другим выполняемым одновременно с ним программам. Для этого в приложении должны быть предусмотрены частные передачи управления операционной системе. Крайним проявлением недружественности приложения является его зависание, которое приводит к общему краху системы. Потому распределение функций планирования между ОС и приложениями достаточно сложно в программистском отношении и используется, как правило, в специализированных системах с фиксированным набором задач. В то же время существенным преимуществом невытесняющего планирования является более высокая скорость переключения потоков.

Однако почти во всех ОС (UNIX, Windows NT/2000/2003, OS/2, VAX/VMS и др.) реализованы вытесняющие алгоритмы планирования. В основе многих таких алгоритмов лежит концепция квантования. В соответствии с ней каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени – квант.

Смена активного потока происходит, если:

поток завершается и покинул систему;

произошла ошибка;

поток перешел в состояние ожидания;

исчерпан квант времени, отведенный данному потоку.

Поток, который исчерпал свой квант, переводится в состояние готовности и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый поток из очереди готовых потоков.

Кванты, выделяемые потокам, могут быть равными или различными (типичное значение десятки – сотни мс). Например, первоначально каждому потоку назначается достаточно большой квант, а величина каждого следующего кванта уменьшается до некоторой заранее заданной величины. В таком случае преимущество получают короткие задачи, которые успевают выполняться в течение первого кванта (второго и т.д.), а длительные вычисления будут проводиться в фоновом режиме.

Некоторые потоки, получив квант времени, используют его не полностью, например, из-за необходимости выполнить ввод или вывод данных. В результате может возникнуть ситуация, когда потоки с интенсивным вводом-выводом используют только небольшую часть выделенного им процессорного времени. Можно исправить эту "несправедливость", изменив алгоритм планирования, например, так: создать две очереди потоков, очередь 1 – для потоков, которые пришли в состояние готовности в результате исчерпания кванта времени, и очередь 2 – для потоков, у которых завершилась операция ввода-вывода. При выборе потока для выполнения сначала просматривается вторая очередь, и если она пуста, квант выделяется потоку из первой очереди.

Отметим три замечания об алгоритмах, основанных на квантовании.

Первое. Переключение контактов потоков связано с потерями процессорного времени, которые не зависят от величины кванта, но зависят от частоты переключения. Поэтому чем больше квант, тем меньше суммарные затраты процессорного времени на переключение потоков.

Второе. С увеличением кванта может быть ухудшено качество обслуживания пользователей, связанное с ростом времени реакции системы.

Третье. В алгоритмах, основанных на квантовании, ОС не имеет никаких сведений о решаемых задачах (длинные или короткие, интенсивен "ввод-вывод" или нет, важно быстрое исполнение или нет и т.п.). Дифференциация обслуживания при квантовании базируется на "истории существования" потока в системе.

Важной концепцией, лежащей в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Оно предполагает наличие у потоков некоторой изначально известной характеристики – приоритета, на основании которого определяется порядок выполнения потоков. Чем выше приоритет, тем выше привилегии потока, тем меньше времени поток находится в очередях. Приоритет задается числом (целым или дробным, положительным или отрицательным).

В большинстве ОС, поддерживающих потоки, приоритет потока связан с приоритетом процесса, в рамках которого выполняется поток. Приоритет процесса назначается операционной системой при его создании, его значение включается в описатель процесса и используется при назначении приоритета потоком этого процесса. При назначении приоритетов вновь созданному процессу ОС учитывается, является ли этот процесс системным или прикладным, каков статус пользователя, запустившего процесс (администратор, пользователь, часть и т.п.), было ли явное указание пользователя на присвоение процессу определенного уровня приоритета. Поток может быть инициирован не только по команде пользователя, но и в результате выполнения системного вызова другим потоком. В этом случае ОС учитывает значения параметров системного вызова.

Изменения приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к ОС, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме этого, сама ОС может изменить приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных приоритетов. Возможности пользователей влиять на приоритеты процессов и потоков ограничены ОС. Обычно это разрешается администраторам, и то в определенных пределах. В большинстве случаев ОС присваивает приоритеты потокам по умолчанию.

Существует две разновидности приоритетного планирования: с относительными и абсолютными приоритетами. В обоих случаях на выполнение выбирается поток, имеющий наивысший приоритет. Но определение момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (по вводу-выводу, например), или не завершится, или не произойдет ошибка. В системах с абсолютными приоритетами выполнение активного потока прерывается еще и по причине появления потока, имеющего более высокий приоритет, чем у активного потока. В этом случае прерванный поток переходит в состояние готовности.

В качестве примера рассмотрим организацию приоритетного обслуживания в Windows 2000/2003/XP/Vista. Здесь приоритеты организованны в виде двух групп, или классов: реального времени и переменные. Каждая из групп состоит из 16 уровней приоритетов (рис. 5.10). Потоки, требующие немедленного внимания, находятся в классе реального времени, который включает такие функции, как осуществление коммуникаций и задачи реального времени [17].

В целом, поскольку W2K использует вытесняющий планировщик с учетом приоритетов, потоки с приоритетами реального времени имеют преимущество по отношению к прочим потокам. В однопроцессорной системе, когда становится готовым к выполнению поток с более высоким приоритетом, чем выполняющийся в настоящий момент, текущий поток вытесняется и начинает выполняться поток с более высоким приоритетом.

Приоритеты из разных классов обрабатываются несколько по-разному. В классе приоритетов реального времени все потоки имеют фиксированный приоритет (от 16 до 31), который никогда не изменяется, и все активные потоки с определенным уровнем приоритета располагаются в круговой очереди данного класса (tкв=20 мс для W2K Professional, 120 мс – для однопроцессорных серверов).

В классе переменных приоритетов поток начинает работу с базового приоритета процесса, который может принимать значение от 1 до 15. Каждый поток, связанный с процессом имеет, свой базовый приоритет, равный базовому приоритету процесса, или отличающийся от него не более чем на 2 уровня в большую или меньшую сторону. После активации потока его динамический приоритет может колебаться в определенных пределах – он не может упасть ниже наименьшего базового приоритета данного класса, т.е. 15 (для потоков с приоритетом 16 и выше никогда не делается никаких изменений приоритетов).

Когда же увеличивается приоритет потока? Во-первых, когда завершается операция ввода-вывода и освобождается ожидающий ее поток, его приоритет увеличивается, чтобы дать шанс этому потоку запуститься быстрее и снова запустить операцию ввода-вывода. Суть в том, чтобы поддержать занятость устройств ввода-вывода. Величина, на которую увеличивается приоритет, зависит от устройства ввода-вывода. Как правило, это 1 – для диска, 2 – для последовательной линии, 6 – для клавиатуры и 8 – для звуковой карты.

Во-вторых, если поток ждал семафора, мьютекса или другого события, то когда он отпускается, к его приоритету добавляется 2 единицы, если это поток переднего плана (т.е. управляет окном, к которому направляется ввод с клавиатуры), и одна единица – в противном случае. Таким образом, интерактивный процесс получает преимущество перед большим количеством других процессов. Наконец, если поток графического интерфейса пользователя просыпается, потому что стал доступен оконный ввод, он также получает прибавку к приоритету.

Эти увеличения приоритета не вечны. Они незамедлительно вступают в силу, но если поток использует полностью свой следующий квант, он теряет один пункт приоритета. Если он использует еще квант, то перемещается еще на уровень ниже и т.д. вплоть до своего базового уровня.

Последняя модификация алгоритма планирования W2K заключается в том, что когда окно становится окном переднего плана, все его потоки получают более длительные кванты времени (величина прибавки хранится в системном реестре).

1. Файловые системы FAT, FAT32, NTFS

FAT32 (от англ. File Allocation Table — «таблица размещения файлов») — это файловая система, разработанная компанией Microsoft, разновидность FAT.

FAT32 — последняя версия файловой системы FAT и улучшение предыдущей версии, известной как FAT16. Она была создана, чтобы преодолеть ограничения на размер тома в FAT16, позволяя при этом использовать старый код программ MS-DOS и сохранив формат. FAT32 использует 32-разрядную адресацию кластеров. FAT32 появилась вместе с Windows 95 OSR2.

Максимально возможное число кластеров в FAT32 равно 268 435 445, что позволяет использовать тома (логические диски) объёмом до 8 ТБ. При использовании размера кластера, равного 32768 байт, максимальный размер тома составит чуть менее 1024 ТБ. Хотя размер сектора может быть любым, традиционно он считается равным 1 сектору диска и равен 512 байт и т.к. эта величина не менялась с момента создания — она может считаться некоторым ПО как константа. Это может вызвать некоторые проблемы совместимости. Средство ScanDisk, входящее в состав Microsoft Windows 95 и Microsoft Windows 98, является 16-разрядной программой. Для таких программ максимальный размер кластера отдельного фрагмента памяти составляет 16 МБ минус 64 КБ. Следовательно, ScanDisk в Windows 95 или Windows 98 не может работать с томами FAT32, у которых размер таблицы FAT превышает 16 МБ минус 64 КБ. Запись в таблице FAT на томе с файловой системой FAT32 имеет размер 4 байта, поэтому ScanDisk не может работать с таблицей FAT на диске FAT32, описывающей более 4 177 920 кластеров (включая два резервных). С учётом самих таблиц FAT и при максимальном размере кластера 32 КБ размер тома может быть до 127,53 ГБ. [1]

Штатными средствами Windows 2000, Windows XP, Windows Vista и Windows 7 невозможно создать разделы FAT32 более 32 ГБ, однако, с такими разделами возможно работать, если они были предварительно созданы в других ОС. Причина этого заключается в том, что, по мнению Microsoft, при увеличении размера тома FAT32 выше 32 ГБ резко падает производительность, и что более подходящее решение — использование NTFS, то есть родной формат файловой системы для Windows 2000 и Windows XP. [1][2] Но поскольку NTFS нецелесообразно использовать на флеш-накопителях, то была разработана специальная файловая система exFAT, снимающая ряд ограничений.

Windows XP работает с томами объемом до 2 ТБ (из справки Windows XP). Программа Partition Magic позволяет создавать FAT32-раздел размером не более ~192 ГБ. Программа EASEUS Partition Master успешно создает FAT32-раздел размером 250 ГБ и более.

Об особенностях работы Windows Vista с FAT32 информации пока нет. [1]

Максимально возможный размер файла для тома FAT32 — ~ 4 ГБ — 4 294 967 295 байт (232-1 — 4 294 967 295 байт) — это весьма важный фактор для смены файловой системы. FAT32 не поддерживает установку разрешений на доступ к файлам и папкам и некоторые другие функции современных файловых систем. Все эти причины привели к тому, что сейчас наблюдается тенденция отказа от FAT32 в пользу более продвинутых файловых систем, таких как NTFS, Ext2/Ext3[источник не указан 109 дней]. Чаще всего недоверие к NTFS возникает у пользователей из-за трудностей с назначением прав доступа (так как чаще всего они единственные владельцы файлов)[источник не указан 109 дней] и ее закрытости. В настоящее время существуют полноценные бесплатные драйверы, предоставляющие полный доступ к Linux Ext2/Ext3/Ext4 разделам из под Windows 2000/XP/Vista/Win7

NTFS (от англ. New Technology File System — «файловая система новой технологии») — стандартная файловая система для семейства операционных систем Microsoft Windows NT.

NTFS заменила использовавшуюся в MS-DOS и Microsoft Windows файловую систему FAT. NTFS поддерживает систему метаданных и использует специализированные структуры данных для хранения информации о файлах для улучшения производительности, надёжности и эффективности использования дискового пространства. NTFS хранит информацию о файлах в главной файловой таблице — Master File Table (MFT). NTFS имеет встроенные возможности разграничения доступа к данным для различных пользователей и групп пользователей (списки контроля доступа — Access Control Lists (ACL)), а также назначать квоты (ограничения на максимальный объём дискового пространства, занимаемый теми или иными пользователями). NTFS использует систему журналирования USN для повышения надёжности файловой системы.

NTFS разработана на основе файловой системы HPFS (от англ. High Performance File System — высокопроизводительная файловая система), создававшейся Microsoft совместно с IBM для операционной системы OS/2. Но, получив такие несомненно полезные новшества, как квотирование, журналируемость, разграничение доступа и аудит, в значительной степени утратила[источник не указан 359 дней] присущую прародительнице (HPFS) весьма высокую производительность файловых операций.

Различают несколько версий NTFS: v1.2 используется в Windows NT 3.51 и Windows NT 4.0, v3.0 поставляется с Windows 2000, v3.1 — с Windows XP, Windows Server 2003, Windows Server 2003 R2, Windows Vista, Windows 7 и Windows Server 2008, Windows Server 2008 R2.

Спецификации файловой системы закрыты. Это создаёт определённые трудности при реализации её поддержки в сторонних продуктах, не принадлежащих Microsoft, в частности, разработчикам драйверов для свободных операционных систем приходится заниматься обратной разработкой системы.

1. Понятие прерывания

Программные прерывания обычно называются особыми случаями, или исключениями (exception). Особые случаи возникают, например, при делении на ноль, нарушения при защите по привилегиям, превышении длины сегмента, выходе за границу массива. Как правило, предсказать эти исключения невозможно.

Прерывание (англ. interrupt) — сигнал, сообщающий процессору о наступлении какого-либо события. При этом выполнение текущей последовательности команд приостанавливается, и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код.[1]

В зависимости от источника возникновения сигнала прерывания делятся на:

асинхронные, или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши. Факт возникновения в системе такого прерывания трактуется как запрос на прерывание (англ. Interrupt request, IRQ);

синхронные, или внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;

программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Термин «ловушка» (англ. trap) иногда используется как синоним термина «прерывание» или «внутреннее прерывание». Как правило, словоупотребление устанавливается в документации производителя конкретной архитектуры процессора.

2. Обработка прерываний

Когда процессор распознает высокий уровень на входе прерывания и прерывания разрешены, он выполняет следующие действия:

1. Вводит номер n от программного контроллера прерываний.

2. Включает в стек содержимое регистра флагов.

3. Включает в стек содержимое регистров сегмента кода и программного счетчика.

4. Устанавливает флаг запрещения прерываний.

5. По номеру n обращается к n-му элементу таблицы векторов прерываний и запускает из него сегмент кода и программный счетчик.

6. Начинает выполнение обработчика прерывания с его точки входа.

7. Обслуживание прерывания заканчивается командой, возвращающее выполнение к прерванной программе.

Когда на входе немаскируемого прерывания устанавливается высокий уровень, происходит такая же обработка прерывания, как и обычного прерывания, кроме шага 1. Дело в том, что немаскируемое прерывание имеет фиксированный номер, поэтому распознается сразу.

3. Вектор прерываний.

Вектор прерывания — закреплённый за устройством номер, который идентифицирует соответствующий обработчик прерываний. Векторы прерываний объединяются в таблицу векторов прерываний, содержащую адреса обработчиков прерываний. Местоположение таблицы зависит от типа и режима работы процессора.

4.Приоритет прерываний.

До окончания обработки прерывания обычно устанавливается запрет на обработку этого типа прерывания, чтобы процессор не входил в цикл обработки одного прерывания. Приоритизация означает, что все источники прерываний делятся на классы и каждому классу назначается свой уровень приоритета запроса на прерывание. Приоритеты могут обслуживаться как относительные и абсолютные[

Относительное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то это прерывание будет обработано только после завершения текущей процедуры обработки прерывания.

Абсолютное обслуживание прерываний означает, что если во время обработки прерывания поступает более приоритетное прерывание, то текущая процедура обработки прерывания вытесняется, и процессор начинает выполнять обработку вновь поступившего более приоритетного прерывания. После завершения этой процедуры процессор возвращается к выполнению вытесненной процедуры обработки прерывания.

5.Классы прерываний.

В зависимости от возможности запрета внешние прерывания делятся на:

маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);

немаскируемые (англ. Non-maskable interrupt, NMI) — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может быть вызвано сбоем в микросхеме памяти.

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку во время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться. В Windows для этого применяется механизм отложенного вызова процедур.

Взаимоблокировка процессов

Взаимоблокировка процессов может происходить, когда несколько процессов борются за один ресурс.

Ресурсы бывают выгружаемые и невыгружаемые, аппаратные и программные.

Выгружаемый ресурс - этот ресурс безболезненно можно забрать у процесса (например: память).

Невыгружаемый ресурс - этот ресурс нельзя забрать у процесса без потери данных (например: принтер).

Проблема взаимоблокировок процессов возникает при борьбе за невыгружаемый ресурсы.

Условия необходимые для взаимоблокировки:

Условие взаимного исключения - в какой-то момент времени, ресурс занят только одним процессом или свободен.

Условие удержания и ожидания - процесс, удерживающий ресурс может запрашивать новые ресурсы.

Условие отсутствия принудительной выгрузки ресурса.

Условие циклического ожидания - должна существовать круговая последовательность из процессов, каждый, из которого ждет доступа к ресурсу, удерживаемому следующим членом последовательности.

5.2 Моделирование взаимоблокировок

Моделирование тупиков с помощью графов.

Условные обозначения

На такой модели очень хорошо проверить возникает ли взаимоблокировка. Если есть цикл, значит, есть и взаимоблокировка.

Рассмотрим простой пример:

три процесса A, B, C

три ресурса R, S, T

Последовательное выполнение процессов, взаимоблокировка не возникает

Рассмотрим циклический алгоритм:

три процесса A, B, C

три ресурса R, S, T

Возникает взаимоблокировка

Рассмотрим тот же самый случай, но допустим, что система, зная о предстоящей взаимоблокировке, заблокирует процесс B.

Взаимоблокировка не возникает.

5.3 Методы борьбы с взаимоблокировками

Четыре стратегии избегания взаимоблокировок:

Пренебрежением проблемой в целом (вдруг пронесет).

Обнаружение и устранение (взаимоблокировка происходит, но оперативно ликвидируется).

Динамическое избежание тупиков.

Предотвращение четырех условий, необходимых для взаимоблокировок.

5.3.1 Пренебрежением проблемой в целом (страусовый алгоритм)

Если вероятность взаимоблокировки очень мала, то ею легче пренебречь, т.к. код исключения может очень усложнить ОС и привести к большим ошибкам. Также многие взаимоблокировки тяжело обнаружить.

Этот алгоритм используется как в UNIX, так и в Windows.

Поэтому (и не только) на серверах часто устанавливают автоматическую перезагрузку (раз в сутки, как правило ночью), если возникнет взаимоблокировка, то после перезагрузки ее не будет.

5.3.2 Обнаружение и устранение взаимоблокировок

Система не пытается предотвратить взаимоблокировку, а пытается обнаружить ее и устранить.

Обнаружение взаимоблокировки при наличии одного ресурса каждого типа

Под одним ресурсом каждого типа, подразумевается один принтер, один сканер и один плоттер и т.д.

Рассмотрим систему из 7-ми процессов и 6-ти ресурсов.

Обнаружение взаимоблокировки при наличии одного ресурса каждого типа

Визуально хорошо видна взаимоблокировка, но нам нужно чтобы ОС сама определяла взаимоблокировку.

Для этого нужен алгоритм.

Рассмотрим один из алгоритмов.

Для каждого узла N в графе выполняется пять шагов.

Задаются начальные условия: L-пустой список, все ребра не маркированы.

Текущий узел добавляем вконец списка L и проверяем количество появления узла в списке. Если он встречается два раза, значит цикл и взаимоблокировка.

Для заданного узла смотрим, выходит ли из него хотя бы одно немаркированное ребро. Если да, то переходим к шагу 4, если нет, то переходим к шагу 5.

Выбираем новое немаркированное исходящее ребро и маркируем его. И переходим по нему к новому узлу и возвращаемся к шагу 3.

Зашли в тупик. Удаляем последний узел из списка и возвращаемся к предыдущему узлу. Возвращаемся к шагу 3. Если это первоначальный узел, значит, циклов нет, и алгоритм завершается.

Алгоритм обнаружения взаимоблокировок

Для нашего случая тупик обнаруживается в списке L=[B,T,E,V,G,U,D,T]

Обнаружение взаимоблокировки при наличии нескольких ресурсов каждого типа

Рассмотрим систему.

m - число классов ресурсов (например: принтеры это один класс)

n - количество процессов

P(n) - процессы

E - вектор существующих ресурсов

E(i) - количество ресурсов класса i

A - вектор доступных (свободных) ресурсов

A(i) - количество доступных ресурсов класса i

С - матрица текущего распределения (какому процессу, какие ресурсы принадлежат)

R - матрица запросов (какой процесс, какой ресурс запросил)

C(ij) - количество экземпляров ресурса j, которое занимает процесс P(i).

R(ij) - количество экземпляров ресурса j, которое хочет получить процесс P(i).

Общее количество ресурсов равно сумме занятых и свободных ресурсов

Рассмотрим алгоритм поиска тупиков.

Алгоритм поиска тупиков при наличии нескольких ресурсов каждого типа

Если остаются не маркированные процессы, значит, есть тупик.

Рассмотрим работу алгоритма на реальном примере.

Используем алгоритм:

Третий процесс может получить желаемые ресурсы, т.к. R (2 1 0 0) = A (2 1 0 0)

Третий процесс освобождает ресурсы. Прибавляем их к A. А = (2 1 0 0) + (0 1 2 0) =(2 2 2 0). Маркируем процесс.

Может выполняться процесс 2. По окончании А=(4 2 2 1).

Теперь может работать первый процесс.

Тупиков не обнаружено.

Если рассмотреть пример, когда второму процессу требуются ресурсы (1 0 3 0), то два процесса окажутся в тупике.

Когда можно искать тупики:

Когда запрашивается очередной ресурс (очень загружает систему)

Через какой то промежуток времени (в интерактивных системах пользователь это ощутит)

Когда загрузка процессора слишком велика

Выход из взаимоблокировки

Восстановление при помощи принудительной выгрузки ресурса

Как правило, требует ручного вмешательства (например: принтер).

Восстановление через откат

Состояние процессов записывается в контрольных точках, и в случае тупика можно сделать откат процесса на более раннее состояние, после чего он продолжит работу снова с этой точки.

С принтером опять будут проблемы.

Восстановление путем уничтожения процесса

Самый простой способ.

Но с принтером опять будут проблемы.

В реальных системах они не годятся.

5.3.3 Динамическое избежание взаимоблокировок

В этом способе ОС должна знать, является ли предоставление ресурса безопасным или нет.

Траектории ресурсов

Рассмотрим модель из двух процессов и двух ресурсов.

А1 - запрос принтера процессом А

А2 - запрос плоттера процессом А

А3 - освобождение принтера процессом А

А4 - освобождение плоттера процессом А

В1 - запрос плоттера процессом В

В2 - запрос принтера процессом В

В3 - освобождение плоттера процессом В

В4 - освобождение принтера процессом В

Динамическое избежание взаимоблокировок

Т.к. процессор предоставляется поочередно, траектория может продолжаться только параллельно осям.

Чтобы избежать тупика, процессам надо обойти прямоугольник, охватывающий всю заштрихованную область.

Безопасные и небезопасные состояния

В безопасном состоянии система может гарантировать, что все процессы закончат свою работу.

Рассмотрим систему.

10 экземпляров ресурса

3 процесса

Процесс А занял 3 экземпляра, но ему необходимо 9.

В этой ситуации можно спланировать так, сначала запустить процесс В, потом С и потом А.

Процессы заканчивают работу без тупиковой ситуации.

Рассмотрим другую ситуацию.

Процесс А занял 4 экземпляра.

Возникает небезопасное состояние.

В принципе, процесс А может в какой то момент ресурс освободить и тупика не возникнет.

Видно, что в этом случае не стоило давать ресурс процессу А.

Алгоритм банкира для одного вида ресурсов

"Банкира", потому что аналогия такая, клиенты-процессы, кредиты-ресурсы.

Рассмотрим систему:

Банкир может дать 10 кредитов (ресурсы).

К нему попеременно обращаются 4-ре клиента.

Алгоритм банкира:

Банкиру поступает запрос от клиента на получение кредита

Банкир проверяет, приводит ли этот запрос к небезопасному состоянию.

Банкир в зависимости от этого дает или отказывает в кредите.

Алгоритм банкира

Алгоритм банкира для несколько видов ресурсов

Рассмотрим систему:

вектора:
E=(6342) - существующие ресурсы
P=(5322) - занятые ресурсы
A=(1020) - доступные ресурсы

Алгоритм поиска безопасного или небезопасного состояния:

Алгоритм банкира для несколько видов ресурсов

Если состояние безопасное то ресурс дать можно, если нет то нельзя.

На практике все эти алгоритмы тяжело реализовать.

5.3.4 Предотвращение четырех условий, необходимых для взаимоблокировок

Предотвращение условия взаимного исключения

Можно минимизировать количество процессов борющихся за ресурсы.

Например, с помощью спулинга для принтера, когда только демон принтера работает с принтером.

Предотвращение условия удержания и ожидания

Один из способов достижения этой цели, это когда процесс должен запрашивать все необходимые ресурсы до начала работы. Если хоть один ресурс недоступен, то процессу вообще ничего не предоставляется.

Предотвращение условия отсутствия принудительной выгрузки ресурса

Можно выгружать ресурсы, но могут быть проблемы с принтером.

Предотвращение условия циклического ожидания

Способы предотвращения:

Процесс сначала должен освободить занятый ресурс, прежде чем занять новый.

Можно пронумеровать все ресурсы (и упорядочить), и процессы должны запрашивать ресурсы только по возрастающему порядку.

Тема 3.3 Защищённость и отказоустойчивость ОС

Защищенность и отказоустойчивость ОС безопасность

1. Защиты информации

В то время как информационная безопасность — это общее понятие для защиты информационной среды, защита информации представляет собой деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию.

Информационная безопасность организации — целенаправленная деятельность её органов и должностных лиц с использованием разрешённых сил и средств по достижению состояния защищённости информационной среды организации, обеспечивающее её нормальное функционирование и динамичное развитие.

Кортеж защиты информации — это последовательность действий для достижения определённой цели.

Информационная безопасность государства[3] — состояние сохранности информационных ресурсов государства и защищённости законных прав личности и общества в информационной сфере.

В современном социуме информационная сфера имеет две составляющие[4]: информационно-техническую (искусственно созданный человеком мир техники, технологий и т. п.) и информационно-психологическую (естественный мир живой природы, включающий и самого человека). Соответственно, в общем случае информационную безопасность общества (государства) можно представить двумя составными частями: информационно-технической безопасностью и информационно-психологической (психофизической) безопасностью.

Безопасность информации (данных)[1] — состояние защищённости информации (данных), при котором обеспечены её (их) конфиденциальность, доступность и целостность.

Информационная безопасность[2] — это процесс обеспечения конфиденциальности, целостности и доступности информации.

Конфиденциальность: свойство информационных ресурсов, в том числе информации, связанное с тем, что они не станут доступными и не будут раскрыты для неуполномоченных лиц.

Целостность: неизменность информации в процессе её передачи или хранения.

Доступность: свойство информационных ресурсов, в том числе информации, определяющее возможность их получения и использования по требованию уполномоченных лиц.

Информационная безопасность (англ. information security)[5] — все аспекты, связанные с определением, достижением и поддержанием конфиденциальности, целостности, доступности, неотказуемости, подотчётности, аутентичности и достоверности информации или средств её обработки.

Безопасность информации (данных) (англ. information (data) security)[6] — состояние защищённости информации (данных), при котором обеспечиваются её (их) конфиденциальность, доступность и целостность.

Безопасность информации (данных) определяется отсутствием недопустимого риска, связанного с утечкой информации по техническим каналам, несанкционированными и непреднамеренными воздействиями на данные и (или) на другие ресурсы автоматизированной информационной системы, используемые в автоматизированной системе.

Безопасность информации (при применении информационных технологий) (англ. IT security)[6] — состояние защищённости информации (данных), обеспечивающее безопасность информации, для обработки которой она применяется, и информационную безопасность автоматизированной информационной системы, в которой она реализована.

Безопасность автоматизированной информационной системы[6] — состояние защищённости автоматизированной системы, при котором обеспечиваются конфиденциальность, доступность, целостность, подотчётность и подлинность её ресурсов.

Информационная безопасность — защищённость информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений. Поддерживающая инфраструктура — системы электро-, тепло-, водо-, газоснабжения, системы кондиционирования и т. д., а также обслуживающий персонал. Неприемлемый ущерб — ущерб, которым нельзя пренебречь.

[править]Существенные признаки понятия

В качестве стандартной модели безопасности часто приводят модель из трёх категорий:

конфиденциальность (англ. confidentiality)[6] — состояние информации, при котором доступ к ней осуществляют только субъекты, имеющие на неё право;

целостность (англ. integrity)[7] — избежание несанкционированной модификации информации;

доступность (англ. availability)[8] — избежание временного или постоянного сокрытия информации от пользователей, получивших права доступа.

Выделяют и другие не всегда обязательные категории модели безопасности:

неотказуемость или апеллируемость (англ. non-repudiation)[5] — способность удостоверять имевшее место действие или событие так, что эти события или действия не могли быть позже отвергнуты;

подотчётность (англ. accountability)[9] — обеспечение идентификации субъекта доступа и регистрации его действий;

достоверность (англ. reliability)[5] — свойство соответствия предусмотренному поведению или результату;

аутентичность или подлинность (англ. authenticity)[5] — свойство, гарантирующее, что субъект или ресурс идентичны заявленным.

2. Задачи безопасности

1.Конфиденциальность - гарантия того, что секретные данные будут доступны только тем пользователям, которым этот доступ разрешен (такие пользователи называются авторизованными).

2.Доступность – гарантия того, что авторизованные пользователи всегда получат доступ к данным.

3.Целостность – гарантия сохранности данными правильных значений, которая обеспечивается запретом для неавторизованных пользователей каким-либо образом изменять, модифицировать, разрушать или создавать данные.

К морально-этическим средствам можно отнести всевозможные нормы, которые сложились по мере распространения вычислительных средств в той или иной стране.

Законодательные средства защиты – это законы, постановления правительства и указы президента, нормативные акты и стандарты, которыми регламентируются правила использования и обработки информации ограниченного доступа.

Административные меры – это действия, предпринимаемые руководством предприятия или организации для обеспечения информационной безопасности.

Психологические меры.

К физическим средствам защиты относятся проверка аппаратуры на соответствие ее спецификациям и отсутствие аппаратных «жучков», средства наружного наблюдения.

Технические средства информационной безопасности реализуются программным и аппаратным обеспечением.

3. Аутентификация

Аутентификация – средства секретного входа, обеспечивающие идентификацию пользователей путем ввода уникального имени и пароля перед тем, как им будет разрешён доступ к системе

2. Авторизация – избирательный контроль доступа, требуемый на этом уровне, позволяет владельцу ресурса определить, кто имеет доступ к ресурсу и что он может с ним делать.

3. Аудит – средства обеспечивают обнаружение и запись важных событий, связанных с безопасностью, или любых попыток создать системные ресурсы, получить доступ к ним или удалить их.

4. Защита памяти заключается в том, что память перед её повторным использованием должна инициализироваться.

Тема 3.4 BIOS.

1. Основные понятия. BIOS

Базовая система ввода-вывода (BIOS) находится в постоянной памяти (постоянном запоминающем устройстве, ПЗУ) компьютера. Эта часть ОС является «встроенной» в компьютер. Ее назначение состоит в выполнении наиболее простых и универсальных услуг операционной системы, связанных с осуществлением ввода-вывода. BIOS содержит также тест функционирования компьютера, проверяющий работу памяти и устройств компьютера при включении его электропитания. Кроме того, BIOS содержит программу вызова загрузчика ОС.

2. Работа с BIOS

Бо́льшую часть BIOS материнской платы составляют микропрограммы инициализации контроллеров на материнской плате, а также подключённых к ней устройств, которые, в свою очередь, могут иметь управляющие контроллеры с собственными BIOS.

Сразу после включения питания компьютера, во время начальной загрузки компьютера, при помощи программ записанных в BIOS, происходит самопроверка аппаратного обеспечения компьютера — POST (power-on self-test). В ходе POST BIOS проверяет работоспособность контроллеров на материнской плате, задаёт низкоуровневые параметры их работы (например, частоту шины и параметры центрального микропроцессора, контроллера оперативной памяти, контроллеров шин FSB, AGP, PCI, USB). Если во время POST случился сбой, BIOS может выдать информацию, позволяющую выявить причину сбоя. Если нет возможности вывести сообщение на монитор, BIOS издаёт звуковой сигнал через встроенный динамик.

Если во время работы POST удался, BIOS ищет на доступных носителях загрузчик операционной системы MBR и передаёт управление операционной системе. Операционная система по ходу работы может изменять большинство настроек, изначально заданных в BIOS.

В некоторых реализациях BIOS позволяет производить загрузку операционной системы через интерфейсы, изначально для этого не предназначенные (USB и IEEE 1394), а также производить загрузку по сети (применяется, например, в так называемых «тонких клиентах»).

Старые IBM PC/XT, которые не имели полноценной операционной системы, либо её загрузка не была необходима пользователю, вызывали встроенный интерпретатор языка BASIC. В некоторых BIOS’ах реализуется дополнительная функциональность:

Воспроизведение аудио-CD или DVD-дисков.

Обновление самого BIOS’а (с внешних носителей).

Использование простых браузеров.

IBM-совместимые компьютеры изначально конструировались как предельно расширяемые. Поэтому работа с дисками и экраном, в более ранних системах выполнявшаяся через порты ввода-вывода и блоки памяти, были реализованы через функции BIOS. Также BIOS содержит несколько важных интерфейсов, упрощающих программирование — такие, как работа с экраном в телетайпном режиме или сканирование клавиатуры — что также обусловливает её «базовость».

Современные ОС, такие, как Windows и Linux, имеют свои драйверы, не использующие BIOS. Однако функциями BIOS широко пользуются простейшие ОС (такие, как DOS), а также все ОС в момент загрузки и в «аварийных» режимах.

С развитием компьютерных систем в BIOS продолжали использоваться устаревшие технологии: прежде всего «реальный режим» работы процессора x86.

Для принципиальной замены BIOS рядом производителей вычислительных систем (Unified EFI Forum, UEFI) предложена и внедряется технология EFI.

[править]Конфигурирование оборудования

BIOS’ы материнских плат, как правило, содержат много настроек:

Настройка времени системных часов и даты календаря.

Настройка периферии, не приспособленной к работе в режиме «plug and play». Например, жёсткие диски начала 1990-х годов, работающие в CHS-режиме; COM- и LPT-порты.

Запуск аппаратуры в форсированном (или, наоборот, щадящем) режиме, сброс до заводских настроек.

Активация/отключение встроенного в материнскую плату оборудования (USB-, COM- и LPT-портов, встроенного видео-, сетевого или звукового адаптера).

Отключение некоторых тестов, что ускоряет загрузку ОС.

Активация обходных ветвей для известных ошибок ОС: например, если Windows 95 отказывается загружаться на машине без флоппи-дисковода, BIOS может перенаправить векторы IRQ так, чтобы ОС поняла, что дисковода нет[1]. Если неудачно написанный драйвер не работает с SerialATA-винчестерами, BIOS может эмулировать поведение старого IDE-диска.

Очерёдность носителей, с которых производится загрузка компьютера: жёсткий диск, USB-накопители, CD-ROM, загрузка с сетевой платы по технологии PXE и т. д. Если загрузка с первого носителя не удалась, BIOS пробует второй по списку, и т. д.

Неверные настройки BIOS могут нарушить работу компьютера. Справочную информацию по настройке можно найти в инструкции к материнской плате или в сети[2][3].

Программа настройки BIOS (англ. BIOS Setup) вызывается во время проверки работоспособности нажатием определённой клавиши. Наиболее распространённые — Del, F2, F10 или Esc. Кроме того, существуют определённые комбинации клавиш, позволяющих запустить микропрограмму восстановления (перезаписи) BIOS в микросхеме в случае повреждения её аппаратно, либо вирусом, а также восстановить заводские настройки, позволяющие запустить компьютер после неверных настроек или в случае неудачного разгона.

С выходом операционной системы Windows Vista производители компьютеров стали внедрять в BIOS SLIC-таблицу (ACPI_SLIC table или Software LICensing Description Table). Данная таблица хранит описание сведений о лицензировании программного обеспечения. Является одним из трёх компонентов OEM OFF-LINE активации для операционной системы семейства Microsoft Windows. Если пользователь выполняет новую установку Windows, ему необходимо иметь SLIC в BIOS’е, код продукта OEM и цифровой сертификат OEM для выполнения активации.

Код продукта OEM (OEM SLP или System Locked Pre-installation (англ.)русск.), специальный двадцатипятизначный OEM SLP ключ-лицензия, доступный только крупным производителям комплектующих, является вторым компонентом OEM OFF-LINE активации. Третий же — цифровой сертификат OEM (OEM Certificate), XML-файл с расширением *.xrm-ms, который корпорация Microsoft выдает каждому крупному производителю ПК персональный. По определённому алгоритму операционная система проверяет эти три компонента и, при успешной проверке, автоматически активируется.

3. Основные понятия MS DOS

МS-DOS (англ. MicroSoft Disk Operating System — дисковая операционная система от Microsoft) — коммерческая операционная система фирмы Microsoft для IBM PC-совместимых персональных компьютеров. MS-DOS — самая известная ОС из семейства DOS, ранее устанавливавшаяся на большинство IBM PC-совместимых компьютеров. Со временем она была вытеснена ОС семейства Windows 9x и Windows NT[1].

MS-DOS была создана в 1981 году и в ходе её развития было выпущено восемь крупных версий (1.0, 2.0 и т.д.) и два десятка промежуточных (3.1, 3.2 и т.п.), пока в 2000 году Microsoft не прекратила её разработку. Это был ключевой продукт фирмы, дававший ей существенный доход и маркетинговый ресурс в ходе развития Microsoft от разработчика языка программирования до крупной компании, производящей самое разнообразное программное обеспечение.

Последней коробочной версией стала 6.22, однако MS-DOS продолжала служить загрузчиком для Windows 95 (версии 7.0 и 7.1), Windows 98 (версия 7.1), Windows ME (версия 8.0) и Windows XP (версия 8.23).

В 1980 году Тимом Патерсоном (англ.) из Seattle Computer Products (англ.) была создана QDOS (англ. Quick and Dirty Operating System). Она продавалась SCP под названием 86-DOS, так как была создана для процессора Intel 8086. В основном, QDOS базировалась на наиболее известной ОС того времени — CP/M, созданной компанией Digital Research, однако использовала другую файловую систему. Microsoft приобрела лицензию 86-DOS за $50 тыс. и передала её IBM в декабре 1980 года, а в июле 1981 года[2], незадолго до выпуска IBM PC полностью выкупила права на 86-DOS, доплатив ещё $80 тыс.

Первая версия MS-DOS содержала множество ошибок[источник не указан 759 дней], которые пришлось исправлять программистам IBM[источник не указан 759 дней]. В результате появилась PC DOS. Позже эти ОС объединили, и вплоть до шестой версии они мало чем отличались. PC DOS устанавливали на оригинальные компьютеры IBM, а MS-DOS на их многочисленные клоны.

MS-DOS работает в реальном режиме x86-процессора. Ядро системы устанавливает прерывание INT 21h для системных сервисов — таких, как открытие файла, запись в файл и подобных.





Дата публикования: 2015-10-09; Прочитано: 2298 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.081 с)...