Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Биоформы в художественном конструировании



Формы предметной среды создавались человеком сначала на основе подражания формам природы. Любое творение природы представляет собой высокосовершенное произведение, отличающееся поразительной целесообразностью, надежностью, прочностью, экономично­стью расходования строительного-материала при разнообразии форм и конструкций. Не ис­ключено, что среди исчезнувших с лица Земли многочисленных видов животных и растений были и такие, которые могли бы помочь науке решить не одну техническую проблему. По мере познания окружающей среды у человека начало развиваться абстрагированное мышле­ние. Это позволило создавать предметные формы исходя из их назначения и возможностей материалов. Формообразование объектов во многом стало определяться технологическими особенностями их создания, что утвердило свои ритмы организации внешней формы (ритмы кладки деревянных изб, каменных крепостей, кирпичных стен, плетеных поверхностей, вя­заных изделий, ритмы конструктивных швов, соединяющих полотнища тканей). Таким обра­зом, ритмическая организация формы, созданной человеком, есть внешнее проявление внут­ренней структуры, полученной определенным технологическим путем.

Природные формы были неиссякаемым источником идей для художников и конструкто­ров, многие из них обладали обширными познаниями в ботанике и черпали вдохновение в мире растений. Цветы, стебли и листья, благодаря своим изогнутым силуэтам, служили творческим источником для формообразования в стиле ар ну во. Наиболее распространенной темой стали бутон (символ появления новой жизни), раковина, волна, пламя, облако, экзоти­ческие растения с длинными стеблями и бледными цветками. Предпочтение отдавалось ли­лиям, кувшинкам, ирисам, орхидеям. Для создания живописного узора стилизовали пальмо­вые листья, водоросли, яркие и грандиозные насекомые, птицы - стрекозы, павлины и лас­точки, змеи и борзые собаки. В большой моде было изображение женского тела, особенно в сочетании с фантастическими завитками и волнами длинных волос, напоминающих языки пламени или океанские волны.


Бурный рост технической мысли, начавшийся с середины XX столетия, развитие биоло­гии, кибернетики и других наук привело к взаимосвязи биологических и технических дисци­плин и обусловило развитие нового научного направления- бионики [Воронцова, 1981]. Бионика (от греч. Ыоп - элемент, ячейка жизни) изучает особенности строения жизнедея­тельности организмов для создания новых систем (приборов, механизмов) и совершенство­вания существующих. Бионика занимается изучением аналогий в живой и неживой природе для дальнейшего использования установленных принципов построения и функционирования биологических систем и их элементов при совершенствовании существующих технических систем, созданием принципиально новых машин, аппаратов, строительных конструкций. Изучая процесс окраски у животных, бионики заимствовали идею изменения цвета в зависи­мости от изменения температуры. Ученым удалось создать особые термометрические крас­ки, с помощью которых легко узнать, как нагреваются во время работы различные детали машин и механизмов. Бионики давно исследуют конструктивные особенности принципов работы оригинальных «живых движителей», отличающихся высокой проходимостью, ма­невренностью, надежностью и экономичностью. На их основе разрабатываются проекты вез­деходных, прыгающих, ползающих и других универсальных средств передвижения. По принципу вакуумной присоски стали делать подъемные краны, стоящие на прижатой к земле стальной чаше, из-под которой откачивают воздух. В основе движения шагающего экскава­тора лежит гидропривод, напоминающий гидропривод пауков. Чтобы не проваливаться при ходьбе, у пингвинов существует оригинальный способ передвижения - на животе, отталки­ваясь крыльями и ластами от снега. Создана снегоходная машина «Пингвин», развивающая скорость по рыхлому снегу до 50 км/час.

Первым, кто начал изучать механику полета живых моделей с бионических позиций, был великий Леонардо да Винчи. Он пытался построить летательный аппарат с машущим кры­лом. Идея создания летательного аппарата по принципу полета насекомых - энтомоптера, -зародившаяся в глубокой древности, продолжает оставаться на повестке дня для биоников. В 1923 г. В. Татлин создал уникальную модель летательного аппарата, основанного на прин­ципе действия птичьего крыла и выполненного из дерева, шелка, алюминия, китового уса и других материалов. Автор построил аппарат на принципе использования живых органиче­ских форм. Наблюдения над этими формами привели его к выводу о том, что «наиболее эс­тетичные формы и есть наиболее экономичные. Работа над оформлением материала в этом направлении и есть искусство». Принцип рациональности и функциональности формы, ее соответствие свойствам материала - важная часть татлинской концепции формообразования.

Бионика- это наука об использовании знаний о конструкциях и формах, принципах и технологических процессах живой природы в технике и строительстве. Архитектурная био­ника - ветвь бионической науки, исследующая принципы формообразования гармонически сформированных функциональных структур. В строительном искусстве ярче, чем в какой-либо другой сфере деятельности человека, видны первые шаги бионики. Архитектурная бионика не предполагает копирование форм живой природы: в архитектуре используются законы и принципы формообразования наиболее гармонически сформированных функцио­нальных структур в органическом мире. В живой природе структурную организацию формы определяет характер ее функционирования (способ жизни, развития). Финский дизайнер Ал-вар Аалто заметил: «В творениях природы формы возникают из их внутренних конструк­ций». Основой создания природообразных структур является анализ конструктивной целесо­образности форм. Изучение природных форм позволило архитекторам разработать новые типы структур: соединенные по спирали, пружинящие, построенные на шарнирах, соединен­ные по принципу центрально-осевой симметрии, с трансформирующимися конструкциями. Подобного рода объекты несут новые образы, их ритмическая организация одновременно и новая, и столь знакомая становится признаком оригинального дизайна. К этим явлениям сле­дует чутко относиться проектировщику костюма, ибо костюм должен вписываться в окру­жающую, быстро меняющуюся среду.


Все изменения формы растений и животных (открывающиеся и закрывающиеся в зави­симости от времени суток лепестки цветов, изменения пространственной формы частей рас­тений в зависимости от света и механических раздражений) носят временный характер и в биологии называются обратимыми движениями, а в архитектонике- трансформациями. Принцип трансформации природных конструкций и систем представляет большой интерес для архитекторов при решении проблемы «движущейся архитектуры». Особое внимание уделяется вопросу создания трансформирующихся сооружений для районов с неустойчивым климатом, требующим автоматически регулируемого покрытия для зданий.

На основе исследования конструктивных особенностей принципов работы оригинальных живых моделей, отличающихся высокой маневренностью, надежностью и экономичностью (насекомые, черные морские ежи, ящерицы, пингвины, горные козлы, тигры, леопарды и проч.), разрабатываются проекты вездеходных, прыгающих, ползающих и других универ­сальных средств передвижения. Биомеханика (от греч. bios - жизнь) изучает механические свойства живых тканей, органов и организма в целом, а также происходящие в них механи­ческие явления (при движении, дыхании и т.д.).

Закрученная форма природных конструкций подсказала архитекторам новую форму спи­ралевидной основы здания - турбосомы. Она аэродинамична, любые ветры лишь обтекают ее тело, не раскачивая и не принося никакого вреда. Турбосома может быть использована при строительстве высотных домов.

Принцип сопротивляемости конструкции по форме, которая проявляется в складчатых ли­стьях, в закручивающихся в спираль или в трубочку листьях и лепестках растений, прини­мающих другую пространственную форму, нашел широкое применение в современном строительстве. Складчатые конструкции, образованные из плоских поверхностей, просты в изготовлении и в монтаже, они могут перекрывать весьма большие сооружения.

Паутина явилась прообразом конструкции моста на длинных гибких тросах, положив на­чало строительству подвесных мостов. Принципы построения природных конструкций из тонких натянутых нитей, а также конструкций из нитей с натянутыми между ними мембра­нами легли в основу вантовых конструкций. Прототипами для них послужили паутина, пе­репончатые лапы водоплавающих птиц, плавники рыб, крылья летучих мышей. В формооб­разовании современного костюма распространены образные темы, повторяющие прозрач­ность и деликатность строения паутины в трикотажных переплетениях. Тончайшие нити вискозы и шелковой пряжи в структурах и хаотичных рисунках, полученных на основе спу­щенных петель, - идеальные переплетения для вечерней одежды. Металлизированная пряжа с эффектом ржавчины и окисления позволяет создать ощущение каркаса - структуры, суще­ствующей как бы отдельно от тела и создающей объемные скульптурные силуэты. Трикотаж, напоминающий кокон, создают из веревок и лент, как бы обвязанных или оплетенных вокруг тела. С одной стороны, он защищает, а с другой - ограничивает подвижность.

Байтовые конструкции являются наиболее эффективным решением для покрытия зданий с большим пролетом - висячие покрытия. Заинтересовал архитекторов и принцип конструк­ции листьев растений: лист обладает достаточной механической прочностью, которая в зна­чительной степени зависит от жилок, пронизывающих его плоскость от основания до вер­хушки. Взяв за основание жилкование листа тропического растения Виктории регии, италь­янский архитектор П. Нерви сконструировал плоское ребристое покрытие фабрики Гатти в Риме и покрытие большого зала Туринской выставки, добившись большого конструктивного и эстетического эффекта. Используется в архитектурной практике и принцип построения пространственно-решетчатых систем: радиолярий, диатомовых водорослей, некоторых гри­бов, раковин, даже микроструктуры головки тазобедренной кости, которая никогда не рабо­тает на излом, а только на сжатие и растяжение. Подобная система может быть использована в конструировании опорных рам, ферм, подъемных кранов. Ученые обнаружили, что распре­деление силовых линий в конструкциях Эйфелевой башни и в берцовой кости человека идентично, хотя инженер не пользовался живыми моделями. Известный математик-конструктор Ле-Реколе установил, что прочность биологической конструкции скелета за-


ключается в соответствующем расположении в материале не плоскостей, а пустых про­странств, то есть обрамлений отверстий, соединяемых различным образом. На основе конст­руктивного изучения структуры костей и других природных моделей родился в архитектуре принцип дырчатых конструкций, положивший начало разработке новых пространственных систем. Так французские инженеры использовали принцип дырчатых конструкций при строительстве моста в виде внешнего скелета морской звезды. Перфорация, плетение, сетки и другие конструкции, способные создавать легкие пружинящие поверхности, активно ис­пользуются дизайнерами в мебельном производстве. Ажурность сетчатых конструкций при­меняется как художественное средство.

Архитекторы в своем творчестве нередко используют принцип конуса. Так, в конструкции Останкинской телебашни отчетливо виден конус гравитации. На основе принципов построе­ния природных высотных конструкций строители проектируют высотные здания нового ти­па - типа стволовой констрз^кции. По принципу строения стебля пшеницы разработан проект высотного здания, у которого основание более узкое, чем средняя часть. Упругие демпферы, разделяющие здание по высоте на несколько элементов, снижают силу ветрового напора и сокращают нагрузку на основание.

Стебель бамбука при значительной высоте и предельно малом диаметре имеет абсолют­ную устойчивость. Ряд соединенных полых элементов трубчатого сечения делают эту конст­рукцию легкой, утолщения и мембраны в местах соединений обеспечивают ее прочность. Эта оригинальная, созданная природой конструкция стала прообразом современных теле­скопических антенн, спиннингов, настольных ламп.

С развитием городов и ростом населения перед строителями встала задача проектирова­ния значительных по объему и размеру зданий без тяжелых трудоемких покрытий и проме­жуточных опор. Поэтому легкие и прочные, тонкостенные и экономичные природные конст­рукции заинтересовали архитекторов. Принцип конструкции этих оболочек лег в основу соз­дания легких, большепролетных стальных и железобетонных покрытий различной кривизны, которые нашли широкое применение при строительстве спортивных комплексов, кинотеат­ров, выставочных павильонов и т.д. В современных постройках толщина купола измеряется миллиметрами, и получали такие купола название оболочек-скорлуп. Скорлупа страусиного яйца обладает особой микроструктурой, допускает газообмен содержимого яйца с внешней средой, однако не пропускает внутрь микроорганизмы и молекулы веществ, своими разме­рами превышающие молекулу кислорода. Задача бионики состоит в имитировании свойств скорлупы страусиных яиц - этой природной упаковки - техническими средствами, используя имеющиеся технические возможности, сконструировать некую слоистую структуру, которая даёт такой же физический эффект, как природная скорлупа.

Принцип тургора живых моделей привел к появлению в архитектуре совершенно новой области строительной техники - созданию пневматически напряженных конструкций. Пнев­матическое напряжение, создаваемое избыточным давлением газа или жидкости, обеспечи­вает гибкой герметичной оболочке несущую способность и устойчивость при любых видах нагрузок. Важнейшими преимуществами надувных систем являются экономичность, малый вес, транспортабельность, компактность, быстрота монтажа, поэтому принцип тургора полу­чил сейчас широкое применение особенно при сооружении временных построек: выставоч­ных и ярмарочных павильонов, спортивных залов, туристических лагерей, овощехранилищ и пр. Наиболее распространенными формами надувных построек пока являются цилиндриче­ский свод и сферический купол, хотя принцип тургора допускает огромное разнообразие пневматических конструкций.

Современные компьютерные технологии и программы позволяют моделировать и про­считывать воздушные потоки в помещениях и зданиях любой конфигурации. Однако когда речь заходит о поиске действительно новаторской идеи, то на неё инженеров гораздо чаще наталкивает всё же не компьютер, а живая природа. При возведении здания техникума в Санкт-Августине под Бонном Кёльнское объединение инженеров-строителей разработало необычную конструкцию вентиляционно-отопительной системы, идея которой позаимство-


вана у термитов. Прежде чем попасть в аудитории, воздух проходит по подземному воздухо­воду длиной в 150 метров: зимой такое техническое решение обеспечивает нагрев, а летом -охлаждение поступающего внутрь здания воздуха, делая в значительной мере излишними кондиционеры.

Принцип построения живых конструкций и унифицированных элементов используется строителями при возведении секционных домов из однотипных элементов. Конструкция пчелиных сот легла в основу изготовления панелей для строительства жилых зданий, однако в дальнейшем, с целью экономии материала, конструкторы стали собирать панели из одного элемента - треугольника с продленными сторонами. При сборке получается сотовая конст­рукция, но без двойных стенок. Весьма успешно используют принцип пчелиных построек и гидростроители - при возведении плотин, шлюзов и других гидросооружений они применя­ют сотовые каркасы.





Дата публикования: 2015-09-17; Прочитано: 1588 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...