Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Нивелиры. Виды нивелиров. Дать формулировку и краткое описание поверок и юстировок нивелира



Рельеф местности - это совокупность неровностей поверхности земли; он является одной из важнейших характеристик местности. Знать рельеф - значит знать отметки всех точек местности. Отметка точки - это численное значение ее высоты над уровенной поверхностью, принятой за начало счета высот. Отметку любой точки местности можно определить по топографической карте, однако, точность такого определения будет невысокой.

Отметку точки на местности определяют по превышению этой точки относительно другой точки, отметка которой известна. Процесс измерения превышения одной точки относительно другой называется нивелированием. Начальной точкой счета высот в нашей стране является нуль Кронштадтского футштока (горизонтальная черта на медной пластине, прикрепленной к устою одного из мостов Кронштадта). От этого нуля идут ходы нивелирования, пункты которых имеют отметки в Балтийской системе высот. Затем от этих пунктов с известными отметками прокладывают новые нивелирные ходы и так далее, пока не получится довольно густая сеть, каждая точка которой имеет известную отметку. Эта сеть называется государственной сетью нивелирования; она покрывает всю территорию страны.

Согласно ГОСТ 10528 - 76 в нашей стране выпускаются нивелиры трех типов: высокоточные с ошибкой измерения превышения не более 0.5 мм на 1 км хода, точные с ошибкой измерения превышения 3 мм на 1 км хода и технические с ошибкой измерения превышений 10 мм на 1 км хода.

Нивелиры всех типов могут выпускаться либо с уровнем при трубе, либо с компенсатором наклона визирной линии трубы. При наличии компенсатора в шифре нивелира добавляется буква К, например, Н-3К. У нивелиров Н-3 и Н-10 допускается наличие горизонтального лимба; в этом случае в шифре нивелира добавляется буква Л, например, Н-10Л.

Нивелир с уровнем при трубе изображен на рис.17.1.

Зрительная труба и уровень при ней являются важнейшими частями нивелира.

Элевационный винт служит для приведения визирной линии трубы в горизонтальное положение. С его помощью поднимают или опускают окулярный конец трубы; при этом пузырек уровня перемещается и когда он будет точно в нульпункте, визирная линия должна устанавливаться горизонтально.

Рис.17.1 Нивелир с уровнем при трубе


1 - зрительная труба; 2 -цилиндрический уровень при трубе;
3 - элевационный винт; 4 -установочный круглый уровень (на рисунке не показан);
5,6 - закрепительный и микрометренный винты азимутального вращения;
7 -ось;
8 -подставка с тремя подъемными винтами.

Цилиндрический уровень обычно контактный; изображение контактов пузырька передается системой призм в поле зрения трубы, что очень удобно, так как наблюдатель видит сразу и рейку, и уровень.

Для нивелира с уровнем при трубе выполняются три поверки.

1. Ось цилиндрического уровня и визирная линия трубы должны быть параллельны и лежать в параллельных вертикальных плоскостях - это условие называется главным условием нивелира с уровнем при трубе. Первая часть главного условия проверяется двойным нивелированием вперед. На местности забивают два колышка на расстоянии около 50 м один от другого. Нивелир устанавливают над точкой А так, чтобы окуляр трубы находился на одной вертикальной линии с точкой (рис.17.2-а). От колышка до центра окуляра измеряют высоту инструмента i1. Затем рейку ставят в точку В, наводят на нее трубу нивелира, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b1. Затем нивелир и рейку меняют местами, измеряют высоту инструмента i2, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b2 (рис.17.2-б).

Пусть главное условие нивелира не выполняется, и при положении пузырька уровня в нульпункте визирная линия не горизонтальна, а составляет с осью уровня некоторый угол i. Тогда вместо правильного отсчета b01 получается ошибочный - b1. Ошибку отсчета обозначим x, и превышение точки В относительно точки А будет равно:

h = i1 - (b1 + x).

При положении нивелира в точке В превышение точки А относительно точки В:

Рис.17.2

h' = i2 - (b2 + x).

Но h = - h', поэтому

i1 - (b1 + x) = - [i2 - (b2 + x)].

Отсюда получаем:

x = 0.5*(i1 + i2) - 0.5*(b1 + b2).

Если x получается больше 4 мм, необходимо выполнить юстировку уровня, т.е. устранить угол i. Для этого элевационным винтом наклоняют трубу нивелира до тех пор, пока отсчет по рейке не будет равен правильному отсчету:

b02 = b2 + x,

при этом пузырек уровня уйдет из нуль-пункта. Исправительными винтами уровня приводят пузырек в нуль-пункт и повторяют поверку заново. Полная программа поверки главного условия включает еще проверку параллельности вертикальных плоскостей, проведенных через визирную линию трубы и ось уровня.

При нивелировании строго из середины ошибка отсчета по рейке из-за невыполнения главного условия нивелира не влияет на величину измеряемого превышения (рис.17.3)

Рис.17.3

2. Ось круглого установочного уровня должна быть параллельна оси вращения нивелира. Приводят пузырек круглого уровня в нуль-пункт, затем поворачивают нивелир по азимуту на 180o. Если пузырек отклонился от нуль-пункта, то на половину отклонения его перемещают с помощью подъемных винтов и на половину - исправительными винтами круглого уровня.

Существует и другой, более надежный способ поверки круглого уровня: сначала тщательно устанавливают ось вращения нивелира в отвесное положение с помощью элевационного винта и цилиндрического уровня при трубе, затем исправительными винтами круглого уровня приводят его пузырек в нуль-пункт.

3. Горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения нивелира, т.е. быть горизонтальной. Рейку ставят в 30 - 40 м от нивелира и закрепляют ее, чтобы она не качалась. Затем берут отсчеты по рейке при трех положениях ее изображения: в центре поля зрения, слева от центра и справа. Если отсчеты отличаются один от другого более, чем на 1 мм, то сетку нитей нужно развернуть.

Предполагая, что сетки нитей строго перпендикулярны, можно проверить вертикальность вертикальной нити. Для этого в 20 м от нивелира подвешивают отвес, наводят на него трубу и проверяют совпадение вертикальной нити сетки с нитью отвеса.

Важнейшими характеристиками нивелира, определяющими точность измерения превышений, являются увеличение зрительной трубы и цена деления цилиндрического уровня при трубе. По этим характеристикам определяет пригодность нивелира для выполнения работ заданной точности. Чтобы получить численные значения увеличения трубы и цены деления уровня, выполняют соответствующие исследования нивелира.

18. В чем сущность способа нивелирования из середины вперед?

Рассмотрим схему геометрического нивелирования из середины с большей строгостью (рис.18.1). Уровенные поверхности не являются плоскими, они сферические, поэтому рейки, установленные в точках А и В перпендикулярно уровенным поверхностям, будут непараллельны между собой. Визирная ось трубы нивелира, установленного между точками А и В, горизонтальна. Она пересекла бы рейки в точках С и D, если бы световой луч распространялся в атмосфере строго прямолинейно. Однако в реальной атмосфере луч света идет по некоторой кривой, которая называется рефракционной кривой. Под влиянием рефракции предмет виден несколько выше своего действительного положения.

Рис.18.1 Нивелирование из середины

В результате рефракции визирный луч будет занимать положение C'JD', и отсчеты по рейкам будут равны отрезкам:

a = C'A и b = D'B.

Для вывода формулы превышения понадобится еще линия MJN, изображающая уровенную поверхность точки J нивелира; она пересекает рейки в точках M и N.

Превышение точки В относительно точки А будет равно разности отрезков МА и NB:

h = MA - NB.

Рис.18.2. Схема разграфки и номенклатуры крупномасштабных планов

Далее из рис.18.2 следует

MA = AC - MC и NB = BD - DN.

Отрезки MC и DN выражают влияние кривизны Земли на высоту точек; оно зависит от расстояния S и радиуса кривизны R. Согласно формуле найдем отрезки MC и DN:

MC = p1 = S21 / 2*R,

DN = S22 / 2*R;

здесь S1 - расстояние от нивелира до точки А;
S2 - расстояние от нивелира до точки В.

Отрезки AC и BD также выразим через их части:

AC = AC' + C'C и BD = BD'+ D'D,

где AC'- отсчет по задней рейке, AC' = a;
BD'- отсчет по передней рейке, BD'= b.

Отрезки C'C и D'D выражают влияние рефракции. Рефракционную кривую принимают за дугу окружности радиуса R1. Установлено, что вблизи земной поверхности радиус рефракционной кривой колеблется от шести до семи земных радиусов. Отношение R/R1 называется коэффициентом вертикальной рефракции и обозначается буквой k; следовательно, R1 = R/k. Значения k лежат в пределах 0.14 - 0.16.

Для отрезков C'C и D'D получаем следующие выражения:

C'C = r1 = S21 / 2* R1, D'D = r2 = S22 / 2*R1.

Подставив вместо R1 выражение R/k, окончательно получим:

r1 = (S21 / 2*R) * k= p1 * k,
r2 = (S22 / 2*R) * k = p2 * k.

h = (AC - MC) - (BD - DN),

h = (AC' + C'C - MC) - (BD' + D'D - DN),

h = (a + p1*k - p1) - (b + p2 *k - p2),

h = (a - b) - [p1*(1 - k) - p2* (1 - k)].

Обозначим через f совместное влияние кривизны Земли и рефракции на отсчет по рейке:

f1 = p1*(1 - k), f2 = p2*(1 - k),

тогда

h = (a - b) - (f1 - f2).

Далее

f1 - f2 = (1 - k)*(p1 - p2),

f1 - f2 = [(1 - k) / 2*R] * (S21 - S22).

Если S1 = S2, то f1- f2 = 0 и h = a - b.

Вывод: при нивелировании строго из середины влияние кривизны Земли и рефракции почти полностью исключается. Это - первое теоретическое обоснование нивелирования из середины. Влияние рефракции может быть исключено не полностью, так как условия прохождения луча до задней и передней реек могут отличаться. Инструкция дает строгий допуск на неравенство расстояний до задней и передней реек: для нивелирования IV класса этот допуск равен 5 м, а для нивелирования I класса - 0,5 м.

19. Как контролируют правильность отсчетов по рейке? Какие допускаются расхождения?

Изготовление реек регламентирует ГОСТ 11158-76. Типы реек по ГОСТу соответствуют типам нивелиров. Рейка нивелирная РН-05 односторонняя, штриховая с инварной полосой применяется для измерения превышений с точностью 0.5 мм на 1 км хода. Рейка нивелирная РН-3 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 3 мм на 1 км хода. Рейка нивелирная РН-10 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 10 мм на 1 км хода (рис.19.1). Длина реек бывает различной: 1200, 1500, 3000 и 4000 мм. У складных реек в шифр добавляется буква С, например, РН-10С.

Рис.19.1. Рейка нивелирная РН-10

Шашечные рейки изготовляются из высушенной первосортной ели; допускается изготовление реек из пластмасс, металлов и сплавов, если при этом выполняются требования ГОСТа на массу рейки, на температуру ее использования и т.п. Перед покраской рейку пропитывают водоотталкивающим составом и грунтуют; деления в виде шашечек наносят черной краской на одну сторону рейки и красной краской на другую. Дециметровые деления подписывают.

На нижнюю часть рейки крепится металлическая пластина, называемая пяткой рейки. На черной стороне пятки соответствует нулевое деление рейки; на красной - отсчет, больший 4000 мм; поэтому отсчеты по красной и черной сторонам рейки не могут быть одинаковыми. Разность пяток для данной рейки является постоянной величиной, что позволяет контролировать правильность отсчетов. В литературе разность пяток называют также разностью нулей рейки.

Для установки рейки в отвесное положение на ней имеется круглый уровень или отвес.

На штриховых односторонних рейках деления наносят на инварную ленточную полосу, которая натягивается вдоль деревянного бруска при помощи специального устройства. Деления в виде штрихов наносят через 5 мм.

Для определения пригодности нивелирных реек к работе выполняют их исследования.

Поверхность рейки должна быть плоской. Уклонение от плоскости по ГОСТу допускается 3 мм для РН-05, 6 мм для РН-3 и 10 мм для РН-10. Вдоль рейки натягивают нитку и просвет между ниткой и рейкой измеряют в самом широком месте.

Случайная ошибка в положении дециметровых и метровых делений не должна превышать 0.15 мм для штриховых инварных реек и 0.5 мм для деревянных шашечных реек. Это исследование выполняют с помощью контрольной линейки.

Определение разности пяток или разности нулей рейки. Это исследование выполняют путем взятия отсчетов по черной и красной сторонам рейки, стоящей на одной и той же точке.

Поверка круглого уровня рейки выполняется либо по отвесу, либо по вертикальной нити сетки нитей нивелира. Отвес укрепляют прямо на рейку и устанавливают ее отвесно, при этом пузырек уровня должен находиться в нуль-пункте. В противном случае исправительными винтами уровня пузырек приводят в нуль-пункт.

Источники ошибок при геометрическом нивелировании.

Ошибка установки визирной линии трубы в горизонтальное положение по уровню; при t = 25" она достигает 3" - 4". Для расстояния 100 м это приводит к ошибке отсчета по рейке 2 мм.

Ошибка отсчета из-за ограниченной разрешающей способности трубы нивелира; при увеличении V = 25x эта ошибка достигает 1.2 мм на 100 м расстояния.

Нарушение главного условия нивелира; при нивелировании строго из середины эта ошибка исключается.

Наклон рейки. Для уменьшения влияния наклона рейки ее рекомендуется слегка покачивать вперед-назад около вертикального положения; при отсчетах меньше 1000 мм рейку качать нельзя. При покачивании рейки отсчеты по ней изменяются; наименьший отсчет является правильным.

Ошибка нанесения делений на рейке.

Общая ошибка отсчета по шашечной рейке нивелиром Н-3 оценивается в 4 мм на 100 м

20. Что понимают под погрешностью измерений?

Ни одно измерение не выполняется идеально точно, всегда по различным причинам существует погрешность, т.е. отклонение ре­зультата измерения от истинного значения измеряемой величи­ны.

Систематические погрешности остаются постоянными по величине и знаку или закономерно изменяются при повторных измерениях одной и той же величины. Систематические погрешности разделяются на методические (несовершенство метода измерений; в том числе влияние средств измерения на объект, свойство которого измеряется), инструментальные (зависящие от погрешности применяемых средств измерений), внешние (обусловленные влиянием условий проведения измерений) и субъективные (обусловленные индивидуальными особенностями оператора).

Различают абсолютную и относительную погрешность измерения.

Под абсолютной погрешностью измерения понимают разность между полученным в ходе измерения и истинным значением физической величины:

(20.1)

Без сравнения с измеряемой величиной абсолютная погрешность ничего не говорит о качестве измерения. Одна и та же погрешность в 1 мм при измерении длины комнаты не играет роли, при измерении длины тетради уже может быть существенна, а при измерении диаметра проволоки совершенно недопустима.

Поэтому вводят относительную погрешность, показывающую, какую часть абсолютная погрешность составляет от истинного значения измеряемой величины. Относительная погрешность представляет собой отно­шение абсолютной погрешности к истинному значению измеряемой величины:

(20.2)

Относительная погрешность обычно выражается в процентах.

Результат измерения величины принято записывать в виде:

xизм ± Dх, d=…%

При записи абсолютной погрешности ее величину округляют до двух значащих цифр, если первая их них является единицей, и до одной значащей цифры во всех остальных случаях. При записи измеренного значения величины последней должна указываться цифра того десятичного разряда, который использован при указании погрешности.

Из формул (20.1) и (20.2) следует, что для нахождения погрешностей измерений необходимо знать истинное значение измеряемой величины. Поэтому этими формулами можно пользоваться только в тех редких случаях, когда проводятся измерения констант, значения которых заранее известны. Цель же измерений, как правило, состоит в том, чтобы найти не известное значение физической величины. Поэтому на практике погрешности измерений не вычисляются, а оцениваются.

В частности, относительную погрешность находят как отношение абсолютной погрешности не к истинному, а к измеренному значению величины:

(20.3)

Способы оценки абсолютной погрешности разные для прямых и косвенных измерений.

Максимальную абсолютную погрешность при прямых измерениях находят как сумму абсолютной инструментальной погрешности и абсолютной погрешности отсчета: Dх=Dхприб + Dхотсч (20.4)

Погрешность отсчета является случайной и устраняется при многократных измерениях. Если же проводится одно измерение, она обычно принимается равной половине цены деления шкалы измерительного прибора.

21. Что такое грубые, систематические и случайные погрешности измерений? Перечислить основные свойства случайных погрешностей.

Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

Систематическая погрешность — погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок или «улучшением» эксперимента.

Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние как правило можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.





Дата публикования: 2015-07-22; Прочитано: 2676 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...