Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фотохимия загрязненной атмосферы городов. Фотохимическое образование смога



Особый тип загрязнения городской атмосферы, впервые отмеченный в 1944 г. в Лос-Анджелесе, получил название «фотохимического смога». В отличие от общеизвестного «лондонского смога» – густого тумана с примесью частиц сажи и оксидов серы, - фотохимический смог возникает под действием солнечного света, чаще всего в условиях устойчивой стратификации атмосферы, при низкой влажности воздуха. Признаком возникновения смога служит появление голубоватой дымки и вследствие этого ухудшение видимости. Наблюдается сильное раздражение слизистых оболочек дыхательных путей и глаз. Сохранения смоговой ситуации в течение длительного времени приводит к повышению заболеваемости и смертности населения. Особенно сильно смог влияет на детей и лиц пожилого возраста. Он оказывает вредное воздействие и на растительность, вызывая увядание и гибель листвы. К более отдаленным последствиям относятся усиление коррозии металлов, разрушение резины и сооружений.

Основными химическими соединениями, ответственными за эти свойства смога, служат озон и пероксиацетилнитрат (ПАН). Именно эти соединения придают смогу окислительный характер. Данные соединения образуются под действием солнечного света из компонентов, входящих в состав выхлопных газов автомобильного транспорта (1952 г., Хааген-Смит).

Увеличение концентрации озона связано с характерным изменением относительного содержания оксидов азота: оно начинается после того, как отношение концентрации NO2 и NO достигает максимума. С другой стороны, содержание ПАН увеличивается с возрастанием концентрации альдегидов.

Объяснение динамики накопления озона в атмосфере можно найти, рассмотрев процессы превращения оксидов азота в различных условиях. В тропосфере образование и разрушение молекул озона происходит в результате следующих циклических реакций:

CO + ·OH ® H· + CO2

M

H· + O2 ® HO2·

HO2· + NO ® ·OH + NO2

hn

NO2 ® NO + O(3P) (1)

M

O(3P) + O2 ® O3 (2)

O3 + NO ® O2 + NO2 (3)

Из уравнений видно, что концентрация озона будет возрастать при увеличении скорости конверсии NO в NO2 (3è 1è 3). Такое ускорение имеет место в атмосфере городов благодаря участию в реакциях углеводородов, карбонильных соединений и оксида углерода. Взаимодействие органических соединений с гидроксильными радикалами приводит к последовательным реакциям, которые можно записать в общем виде уравнениями:

R-H + ·OH ® R· + H2O (1)

M

R· + O2 ® ROO· (2)

ROO· + NO ® RO· + NO2 (3)

где R·- алкильная или ацильная группа

В случае алканов присоединение гидроксила дает радикалы, реагирующие в дальнейшем по уравнениям 2 и 3. Фотолиз альдегидов и окисление СО приводят к гидропероксидному радикалу НО2 ·, который также быстро взаимодействует с NO:

hn

R-CH=O ® R· + HCO·

HCO· + O2 ® CO + HO2·

HO2· + NO ® NO2 + ·OH

Увеличение относительного содержания ароматических углеводородов приводит к некоторому снижению концентрации и скорости накопления озона вследствие малого выхода пероксидных радикалов и удаления частиц оксидов азота в виде нитрофенолов. Аналогичных эффект имеет образование алкилнитратов и нитритов, пероксиацилнитратов и неорганических соединений азота, таких как водорастворимые N2O5 и HNO3.

Т.о., накопление озона зависит от соотношения начальных концентраций органических соединений - предшественников пероксидных радикалов и оксидов азота. При малой величине этого отношения скорость конверсии NO в NO2 мала и оксид азота включается в процесс разрушения озона

O3 + NO ® O2 + NO2

При очень высоком отношении озон также не будет накапливаться, во-первых, из-за связывания диоксида азота органическими радикалами, а во-вторых, из-за реакции образовавшегося О3 с углеводородами.

Пероксидный радикал в первую очередь вступает в реакции полимеризации с олефинами, в которых образование цепи продолжается до тех пор, пока радикал или молекула NO не вызовет обрыва цепи. Наряду с полимеризацией пероксидные радикалы могут взаимодействовать с NO2 , образуя пероксиацетилнитрат:

·

CH3CH=O + ·OH ® CH3C=O + H2O

·

CH3C=O +O2 ® CH3C(O)OO·

CH3C(O)OO· +NO2 ® CH3C(O)OONO2

Состав смога зависит от его происхождения, времени образования. Летом в Лос-Анджелеском смоге приимущественно присутствуют оксиды азота, озон, ПАН и другие соединения, пероксидного характера. Наряду с ПАН из пероксидных соединений следует отметить различные альдегиды, которые также вносят в смог долю токсичности. Из-за высокой реакционной способности О3, ·ОН, Н2О· и О (3Р) в смоге появляется множество различных соединений, которые не все известны.





Дата публикования: 2015-04-09; Прочитано: 483 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...