Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Гидравлическая модель К.Лоренца



Лоренц предложил гипотетическую модель осуществления реакций типа завершающих актов, общие принципы которой были заимствованы из гидравлики. Хотя в свое время модель активно использовалась для трактовки механизмов поведенческого акта, а положенные в ее основу принципы никогда не были опровергнуты, в настоящее время она представляет лишь исторический интерес.

Основные конструктивные элементы модели Лоренц заимствовал из гидравлики, и модель иногда называли "психогидравлической". При повышении мотивации, например при лишении животного пищи, накапливается "специфическая энергия действия", т.е. энергия, которая относится только к чувству голода и не связана ни с какими другими типами поведения. В модели это представлено как постепенное накопление воды в резервуаре, куда она поступает через кран. Вытекание воды из резервуара представляет собой активность животного, в частности двигательную активность. В норме выход из резервуара закрыт клапаном, который снабжен пружиной. Клапан открывается двумя способами. Первый - это помещение на чашку весов грузов разного веса, что соответствует действию различных внешних раздражителей. Постепенно нарастающее давление воды в резервуаре и груз на чашке весов действуют в одном направлении: открывают клапан. Чем выше уровень воды, тем меньший груз необходимо добавить на чашку весов, а иногда открывание клапана обеспечивает только давление воды - это будет соответствовать активности вхолостую. Разные типы активности животного представлены в модели в виде разных отверстий в градуированном наклонном лотке. При слегка открытом клапане воды выливается мало, она попадает лишь в первое, самое нижнее отверстие лотка. Это соответствует форме активности, имеющей самый низкий порог, т.е. одной из форм поискового поведения. Если клапан открывается сильнее, вода выливается и через другие отверстия лотка, что соответствует активности с более высоким порогом. Если вся вода вылилась, поведенческая реакция не проявляется, как бы ни были сильны действующие на животное стимулы. Понятие "истощение двигательного акта", которое используется в классической этологии, относится именно к этому случаю.

С точки зрения современной науки, в определенных пределах предложенная Лоренцем модель хорошо описывает феноменологию инстинктивных действий, а также циклические изменения, происходящие в реактивности нервной системы животного к внешним раздражителям - снижение порога совершения действия, если оно долго не выполнялось, восстановление готовности к инстинктивным действиям после перерыва и возможность появления реакций на неспецифические раздражители. В течение некоторого времени она являлась стимулом к развитию новых исследований. Однако наряду с этим модель Лоренца неоднократно подвергалась критике, отчасти необоснованной, но отчасти и справедливой (например, механистичность построения). При создании модели принимались в расчет лишь самые общие черты, отражающие схему работы моделируемой системы, а также ее соответствие известным из опыта фактам. Хорошо иллюстрируя многие из известных феноменов, гидравлическая модель Лоренца была все же не в состоянии объяснить все многообразие поведения. Однако это свидетельствовало лишь о том, что представление о запасании "специфической энергии действия" имеет ограниченное применение, и соответствующие термины и понятия не универсальны. Современная оценка концепции Лоренца о врожденном разрешающем механизме опирается на большое количество экспериментальных фактов, полученных в последние годы. Очевидно, что и "специфическая энергия действия", и ключевые стимулы - это понятия, которые в переводе на язык современной нейрофизиологии выражаются такими терминами, как "специфическое побуждение", активация той или иной мотивационной системы, а также видоспецифическая избирательность перцепторного аппарата.

Представления Лоренца, заложившего основы этологии, развил голландский ученый Н. Тинберген. Большая часть его исследований была проведена в 50-е гг. ХХ столетия в Оксфордском университете. Там под руководством Тинбергена было образовано особое направление, получившее известность как английская школы этологии.

Тинбергену принадлежит разработка иерархической модели поведения, которая в большей степени учитывала физиологические данные, чем исходная модель Лоренца. На базе этой модели он выделил некоторые формы конфликтного поведения и высказал гипотезу об их механизмах.

Тинберген и его ученики в течение многих лет систематически исследовали в природных условиях поведение ряда видов насекомых и птиц. Классическим объектом их лабораторных исследований стала трехиглая колюшка - легко размножающийся в неволе вид пресноводных рыб, обладающий целым рядом интересных поведенческих особенностей. Репродуктивное поведение колюшки послужило моделью для выявления многих важных принципов организации поведения животных.

Огромное значение для современной этологии приобрели работы школы Тинбергена, проведенные на колониальных морских птицах. Эти работы явились основой многих современных представлений о сообществах животных и факторах, регулирующих их структуру. Кроме того, они способствовали изучению проблемы многообразных форм приспособления животных к борьбе с хищниками, которая накладывает отпечаток практически на все стороны поведения. Многообразные исследования Тинбергена оказались весьма важными и для проблемы эволюции поведения.

Основой для разработанной Тинбергеном модели поведения послужили следующие факты. Известно, что между различными стереотипными двигательными реакциями существует ряд закономерных отношений. В некоторых ситуациях группы инстинктивных движений появляются совместно, они характеризуют определенное внутреннее состояние животного и проявляют общие флюктуации порога поведенческой реакции. Повышение порога реакции А поднимает порог реакции В (и наоборот), а это свидетельствует о том, что обе они зависят от общего функционального "центра". Наблюдая за сложными поведенческими комплексами действий, можно видеть некоторую регулярность в последовательности проявления тех или иных действий. В качестве примера можно привести агрессивные столкновения рыб за раздел территории. У многих костистых рыб, в том числе и у цихлид, им почти всегда предшествует демонстрация запугивания. Причем у одних видов эти столкновения следуют за очень коротким периодом запугивания, а у других - за весьма разнообразными демонстрациями запугивания серьезное агрессивное столкновение с ранениями следует лишь в том случае, если силы обоих самцов равны. Наконец, у третьей группы видов настоящие драки уже не наблюдаются, и крайне ритуализированная церемония запугивания выполняется до полного истощения одного из соперников, что и решает спор.

В такого рода ритуализованных столкновениях имеется специфическая последовательность движений: они начинаются с демонстрации боковых поверхностей тела, за которой следует подъем вертикальных плавников. Затем следуют удары хвостом, которые через посредство боковой линии, воспринимающей изменение давления воды, могут, вероятно, сообщить о силе противника. После этого противники встают друг перед другом, вслед за чем начинаются взаимные толчки с открытой пастью, а у других видов - укусы в открытый рот. Они продолжаются до тех пор, пока один из соперников не устанет, окраска его бледнеет, и в конце концов он уплывает.

Такие ритуализованные драки и агрессивные столкновения - прекрасные примеры специфической последовательности стереотипных двигательных реакций: удары хвостом не начнутся до подъема спинного плавника, а толчки отмечаются только после многих ударов хвостом. По интенсивности демонстрации запугивания и ударов хвоста опытный наблюдатель может определить, кто победит и начнутся ли толчки "с открытой пастью" вообще, или же один из соперников просто сбежит до начала "серьезной драки".

Интерпретируя подобные явления, Тинберген выдвинул гипотезу об иерархии центров, управляющих отдельными поведенческими реакциями. Согласно Тинбергену, инстинкт представляет собой завершенную иерархическую организацию поведенческих актов, реагирующую на определенный раздражитель четко координированным комплексом действий.

Согласно представлениям Тинбергена, изменение возбудимости центров под влиянием внешних и внутренних воздействий происходит в определенной последовательности. Сначала повышается возбудимость "центра" поисковой фазы поведения, и голодное животное начинает поиск пищи. Когда пища будет найдена, произойдет "разрядка" центра, стоящего на более низком уровне иерархии и контролирующего осуществление завершающего акта (поедание пищи). Схему иерархии центров, управляющих поведением самца колюшки в период размножения, Тинберген представляет следующим образом.

Высший центр репродуктивного поведения самца активизируется увеличенной длиной дня, гормональными и другими факторами. Импульсы из этого центра снимают блок с центра поискового поведения. Разрядка этого центра выражается в поисках условий для постройки гнезда. Когда такие условия (подходящая территория, температура, необходимый грунт, мелководье, растительность) найдены, происходит разрядка центров следующего уровня иерархии и благодаря этому становится возможной постройка гнезда.

Если на территорию данного самца проникает соперник, то возбудимость центра агрессивного поведения повышается. Результат этого центра агрессивного поведения - преследования и драки с самцом-соперником. Наконец, при появлении самки повышается возбудимость центра полового поведения и начинается ухаживание за самкой, представляющее собой комплекс фиксированных действий.

В дальнейшем вопросы иерархической организации поведения изучал Хайнд (1975). Он показал, что хотя в принципе комплекс фиксированных действий большой синицы можно расположить в иерархическую схему, однако не всегда удается сделать это полностью, так как некоторые из движений характерны для двух и более видов инстинктов. Иногда эти движения являются завершающими актами, а иногда - просто средством создания условий, в которых можно осуществить завершающее действие.

У молодых животных иерархия поведения часто еще не сформирована. У птенцов, например, сначала появляются, на первый взгляд бессмысленные, изолированные двигательные акты, и только позже они интегрируются в сложный функциональный комплекс движений, связанных с полетом.

Расчленение иерархии поведения на элементы часто можно наблюдать во время игры, когда отдельные поведенческие акты, связанные с различными функциями, свободно комбинируются в сочетания, не характерные для нормального поведения.

Существенно, что модель Тинбергена предусматривает возможность взаимодействия между "центрами" различных видов поведения, Дело в том, что случаи, когда животное в каждый данный момент занято каким-то одним видом деятельности, являются скорее исключением, чем правилом. Обычно одни виды активности сменяют другие. Наиболее простой пример такого взаимодействия - подавление одних центров другими. Например, если у самца чайки во время ухаживания за самками усиливается голод, то он может прекратить брачные демонстрации и отправиться на поиски корма. В данном случае поведение определяется не присутствием внешнего раздражителя, а соответствующим внутренним побуждением.

Как особый случай проявления взаимодействия "центров" можно рассматривать так называемое конфликтное поведение, когда у животного наблюдается одновременно несколько тенденций к различным (часто противоположным) типам поведения. Одним из примеров конфликтного поведения является поведение самцов территориальных видов, описанное Тинбергеном в результате наблюдений за трехиглой колюшкой и за различными видами чаек.

Например, если самец А вторгается на территорию самца В, то последний нападает на него и преследует, а самец А спасается бегством. То же самое произойдет, если самец Б вторгнется на территорию самца А. Если же столкновение произойдет на границе этих двух территорий, то поведение обоих самцов будет выглядеть иначе: у обоих самцов элементы реакций нападения и бегства будут чередоваться. Причем элементы нападения будут выражены тем сильнее, чем ближе самец к центру своей территории. Напротив, по мере удаления от центра будут сильнее выражены элементы бегства.

Как показали наблюдения за озерной чайкой, угрожающее поведение самцов на границе двух территорий включает пять поз, характер и последовательность которых зависят от реакций противника. Каждая из поз отражает определенную степень конфликта между противоположными внутренними побуждениями: агрессивностью - стремлением напасть на противника и страхом - стремлением убежать от него.

Подобный же анализ позволил объяснить и механизм так называемых "замещающих движений" (displacement activity), которые иногда также обнаруживаются у животных в конфликтных ситуациях. Например, в пограничной между двумя участками зоне два самца серебристой чайки, стоящие друг перед другом в угрожающих позах, могут внезапно начать чистить перья; белые гуси на земле совершают те же движения, что и при купании; серые гуси в этих ситуациях отряхиваются, а петухи клюют траву и все, что находится поблизости. Эти реакции являются, как выяснилось, врожденными, так как проявляются без соответствующего индивидуального опыта.

В других случаях конфликт страха и агрессивности приводит к тому, что животное нападает не на противника, а на более слабую особь (как это наблюдал Лоренц у серых гусей), или даже на неодушевленный предмет (чайки при этом клюют листья или землю). Такая "переадресованная" активность, как и "замещающие" действия, проявляется в тех случаях, когда агрессивность и страх уравновешиваются, уступая место другим видам активности, не связанным непосредственно с данной ситуацией.

Таким образом, иерархическая теория инстинктов Тинбергена может объяснить вышеперечисленные явления - и поведение в ситуации конфликта, и замещающие действия, и переадресованную активность.

Генотипическая ограниченность возможностей трансформации инстинктивного поведения

Врожденный характер инстинкта доказывается тем, что инстинктивное

поведение проявляется одинаково у всех представителей вида, даже выросших в изоляции от сородичей. Сравнение поведения близкородственных видов используется сравнительными психологами для анализа эволюции отдельных инстинктов.

Сложные ритуалы достаточно часто возникают на основе обычных, неритуальных форм поведения – смещенной активности, взаимного кормления самок и самцов (у птиц) и др. Движения выделившиеся из «обычных», «утилитарных» форм поведения, утратившие в ходе эволюции свою первичную «рабочую», «механическую» функцию и приобретшие чисто сигнальное значение, начинают выполнятся более демонстративно, ритмично, плавно. Первичные движения получили в этологии название «автохтонных» движений; вторичные, приобретшие новую, в данном случае сигнальную, функцию, — «аллохтонных».

Изменения в поведении при образовании нового вида во многом связано с изменениями в геноме.

У межвидовых гибридов, полученных от видов, в естественных условиях не скрещивающихся, проявления инстинктов имеют ряд особенностей. Одно из первых подробных исследований гибридных форм провел К.Лоренц. У межвидовых гибридов уток выявляются такие фиксированные комплексы действий, которых практически не бывает в репертуаре обеих родительских форм. Можно полагать, что генотип данного вида позволяет обеспечить физиологические механизмы таких стереотипных действий, но в силу каких-то причин они не выявляются фенотипически. Например, У.Дилгер в эксперименте с гибридными особями попугаев-неразлучников наблюдал дезорганизацию гнездостроительного поведения наблюдал. Было получено потомство от скрещивания таких двух видов, которые при постройке гнезда совершали различные действия: один из видов переносил гнездовой материал (в данном случае полоски бумаги) в клюве, другой — между перьями хвоста. Иными словами, два скрещивавшихся вида различались по фиксированным комплексам действий при осуществлении врожденного поведенческого акта.

Гибридные особи в первый сезон размножения оказались не в состоянии построить гнездо, поскольку не могли справиться до конца с фиксацией гнездового материала. Они брали полоски бумаги в клюв (как один из родителей), затем пытались засунуть их между перьями, но делали это не так умело, как второй родитель. В результате постройка гнезда у этих птиц стала налаживаться только в последующие сезоны размножения, но их действия оставались нечеткими, и гнезда получались плохие.

Подобный феномен описан и в брачном поведении межвидовых гибридов рыбок-меченосцев. Самцы-гибриды первого поколения от сжрещивания Xiphophorus helleri и X.montezumae cortezi в состоянии высокого полового возбуждения демонстрируют последовательность действий, характерную для самцов X.helleri, тогда как при меньшем уровне возбуждения их поведение похоже на X.montezumae.

А. Меннинг еще в 1967 г. (Manning, 1967), анализируя генетические различия в половом поведении дрозофилы, высказал предположение, что генетическая изменчивость порогов и частоты выполнения фиксированных комплексов действий может быть основой процесса микроэволюционных изменений поведения.

Анализируя роль отдельных генов в реализации форм поведения, необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные генные мутации могут менять поведение вполне определенным образом. Этот круг тем составляет предмет генетики поведения.

Например, было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans. Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье.

Еще одним примером генетической детерминации форм поведение могут быть наблюдения за осами Habrobracon. Самки этих ос парализуют ядом личинки огневки мельничной, а самцы не нападают на эти личинки, а ухаживают за самками Habrobracon. У половых мозаиков, несущих гены самцов и самок поведение нарушается: они пытаются ухаживать за личинками огневки и жалить самок Habrobracon.

Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.

Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.

Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).

Эффект Болдуина поверхностно схож с Ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.

Поведение влияет также и на работу генов в течение жизни организма. Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.

Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.

Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. У аквариумной рыбки Astatotilapia burtoni в присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.

Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.

egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».

Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе. Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.

Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.

Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.

Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.

Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.

5. Рекомендуемая литература

Литература основная:

1. Фабри К.Э., Основы зоопсихологии. М., Учебно-методический коллектор «Психология», 2001Зоопсихология и сравнительная психология. Учебное пособие.

2. Мирошниченко И.В. Зоопсихология. Конспект лекций. М. А-Приор, 2012, 144 с.

3. Зорина З.А., Полетаева И.И., Резникова Ж.И. Основы этологии и генетики поведения. Издательство МГУ, 2002, 384 с.

Литература дополнительная:

1. Правоторов Г.В. Зоопсихология для гуманитариев, Новосибирск, 2001

2. Ступина С.Г., Филипьечев А.О. Зоопсихоолгия пособие для подготовки к экзаменам. Юрайт- Издат, 2006.

3. Хейс Н. Принципы сравнительной психологии. М., Когито-Центр, 2006.

4. Хрестоматия по зоопсихологии. Из-во УМК МПС, 2005

5. Хрестоматия по зоопсихологии. СПб., Питер, 2001

6. Гороховская Е. А. Этология: рождение дисциплины. СПб.: Алетей, 2001.

7. Крушинский Л. В. Биологические основы рассудочной деятельности.

8. М.: Издво МГУ, 1986.

9. Крушинский Л. В. Избранные труды: В 2 т. М.: Наука, 1993

10. Ладыгина-Коте Н. Н. Дитя шимпанзе и дитя человека в их инстинктах, эмоциях, играх, привычках и выразительных движениях. М., Изд. Гос. Дарвиновского Музея, 1935.

11. Ладыгина-Коте Н. Н. Конструктивная и орудийная деятельность высших обезьян. М.: Наука, 1959.

12. Фирсов Л. А. Довербальный язык обезьян//Журн. эвол. биохим. и физиол. 1983. Т. 19. №4. С. 381-389.

13. Павлов И.П. Рефлекс свободы. СПб., Питер, 2001.

14. Вагнер В.А. Сравнительная психология. М.- Воронеж, 1998.

15. Бериташвили И.С. Память позвоночных животных. М., 1974.





Дата публикования: 2014-12-11; Прочитано: 2992 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...