Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

InstaBus EIB



Шина Instabus EIB представляет собой децентрализованную систему событийного управления с последовательной передачей даннях управления, контроля и сигнализации эксплуатационно-технических функций (рис. 2.6).

Рис. 2.6. Топология сети InstaBus EIB

Подключенные к шине абоненты могут обмениваться информацией через общий канал передачи, шину. Передача данных происходит последовательно по точно установленным правилам (протоколу шины).

При этом подлежащая передаче информация упаковывается в телеграмму и транспортируется по шине от датчика (сенсора) (отправителя команд) к одному или нескольким исполнительным механизмам (акторам) (получателям команд).

При успешной передаче каждый приемник квитирует получение телеграммы. При отсутствии квитирования передача повторяется до трех раз. Если и после этого квитирование телеграммы отсутствует, процесс передачи прерывается и в запоминающем устройстве отправителя отмечается отказ.

Передачи в шине instabus EIB гальванически не разделены, поскольку питание (DC 24 В) абонентов шины подается по ней же.

Телеграммы модулируются на этом напряжении постоянного тока, причем логический нуль пересылается в виде импульса. Отсутствие импульса интерпретируется как логическая единица.

Отдельные данные телеграммы пересылаются асинхронно. Тем не менее, пересылка синхронизируется старт и стоп-битами.

К наименьшей единице системы instabus EIB – линии (рис 2.6), когут подключаться и работать до 64 совместимых с шиной устройств (абонентов). Линейными устройствами сопряжения, подключаемыми к так называемой главной линии, могут объединяться в одну зону до 12 линий.

Через зонные устройства сопряжения, подключаемые к так называемой зонной линии, 15 зон могут быть объединены в более крупный блок. К зонной линии (Gateways) подключаются интерфейсы внешних систем (SICLIMAT X, ISDN и т. п.) или других систем EIB.

Хотя в один блок может быть объединено до 12.000 абонентов, ясная логика системы сохраняется. При работе не возникает никакого информационного хаоса, поскольку телеграмма проходит через інтерфейс к другим линиям и функциональным зонам только в том случае, если там под групповым адресом должен быть вызван абонент. При этом линейные и зонные устройства сопряжения выполняют необходимые функции фильтрации.

Физические адреса ориентированы на такую топологическую структуру: каждый абонент может быть однозначно идентифицирован указанием зонного, линейного и абонентского номера.

Для присвоения абоненту эксплуатационно-технических функцій групповые адреса разделяются на основные группы и подгруппы.

При проектировании групповые адреса различных механизмов когут быть разделены на 14 основных групп. Каждая основная группа может в соответствии с точкой зрения пользователя содержать до 2048 подгрупп.

Групповые адреса присваиваются абонентам независимо от их физических адресов. Благодаря этому каждый абонент может связываться с любым другим абонентом.

Каждая линия в такой топологии требует свой собственный блок питания для абонентов. Этим обеспечивается работоспособность остальной системы instabus EIB даже при выходе из строя одной линии.

Блок питания снабжает отдельных абонентов линии напряженим SELV (безопасным сверхнизким напряжением) DC 24 В и способен в зависимости от исполнения нести нагрузку 320 мА или 640 мА. Он имеет ограничение, как по напряжению, так и по току и поэтому устойчив при коротком замыкании. Кратковременные перерывы напряжения сети перекрываются на время до 100 мс.

Нагрузка шины зависит от характера подключенных к ней абонентов. Абоненты сохраняют работоспособность при минимальном напряжении DC 21 В и обычно потребляют от шины 150 мВт, при дополнительном потреблении конечными устройствами (напр., светодиодами) — до 200 мВт. Если более 30 абонентов установлены на коротком участке линии (напр., в распредустройстве), блок питания

должен размещаться вблизи от них.

Для одной линии допустимо максимально 2 блока питания. Между обоими блоками питания должно соблюдаться минимальное расстояние 200 м (длина линии).

При повышенном потреблении к шине instabus EIB может подключаться параллельно и 2 блока через общий дроссель. Допустимая токовая нагрузка линии повышается при этом на 500 мА.

Доступ к шине как к общему физическому средству связи для асинхронной пересылки должен быть однозначно урегулирован. В шине instabus EIB для этого применяется метод CSMA/CA, речь идет о методе, гарантирующем случайный, бесколлизионный доступ к шине без снижения при этом ее пропускной способности.

Все абоненты шины слушают одновременно, но реагируют только исполнительные механизмы (акторы), вызванные своим адресом. Если абонент хочет начать пересылку, он должен прослушать шину и дождаться момента, когда не будет передачи любого другого абонента (Carrier Sense).

Если шина свободна, то, в принципе, любой абонент может приступить к передаче (Multiple Access) Если два абонента одновременно начинают передачу, то на шину без задержки выходит абонент, обладающий болем высоким приоритетом (Collision Avoidance), при этом другой абонент уступает, и процесс передачи повторяется в более позднее время. Если оба абонента имеют одинаковый приоритет, то проходит тот, который обладает меньшим физическим адресом.

Также в сети возможен обмен информацией через обыкновенную силовую проводку 220В. Такой обмен информацией между компонентами по силовой линии выгодно отличается от передачи по отдельной TP-линии отсутствием дополнительных затрат на проводку этой самой витой пары (TP). При условии соответствия имеющейся силовой проводки международным и национальным стандартам, становится возможным размещение элементов EIB в здании (помещении) без переделки имеющихся коммуникаций. В то же время, PL-передача имеет ряд серьезных недостатков: большая, по сравнению с TP стоимость компонентов, низкая скорость передачи данных, низкая помехозащищенность.

Стандарт передачи данных по силовой линии в EIB получил название PL110 (по используемому частотному диапазону). Основные характеристики PL110:

− модуляция сигнала - частотное манипулирование

− асинхронная передача данных

− синхронизация с основной частотой

− полудуплексная свіязь.

В табл. 2.2 приведены технические данные для шины instabus EIB.

Таблица 2.2_Технические данные instabus EIB

Топология линии связи PL, разумеется, определяется разводкой силовой линии. Силовая линия должна, в первую очередь, соответствовать национальным стандартам. Сеть может быть 2-х или 3-х фазной, напряжение между фазой и нейтралью (по этой цепи идет сигнал) – 230 вольт. Основные характеристики PL110 сведены в табл. 2.3.

Таблица 2.3 _ Основные характеристики PL110

2.2.3. Foundation Field Bus H1 и H2

Эта сеть родилась в результате сотрудничества двух ассоциаций –ISP и WorldFIP, которые до 1993 года пытались самостоятельно создать универсальную промышленную сеть. В 1994 году появилась ассоциация Fieldbus Foundation, продвигающая на рынке и обеспечивающая піддержку сети Foundation Filedbus (FF). После многолетних безуспешных попуток разработать универсальную промышленную сеть, предпринятых ведучими комитетами по стандартизации IEC и ISA, ассоциация Fieldbus Foundation пришла к синтезированному решению с использованием наработок из разных источников под общим названием Foundation Fieldbus. Итак, FF сегодня - это:

- физический уровень H1 FF (медленный), обеспечивающий рабочую скорость 31,25 Кбит/с. Эта реализация физического уровня основана на модифицированной версии стандарта IEC 1158-2 и предназначена для объединения устройств, функционирующих во взрывоопасных газових средах;

- физический уровень H2 FF (быстрый), обеспечивающий рабочую скорость до 1Мбит/с и также основанный на стандарте IEC 1158-2;

- сетевой уровень, использующий элементы проекта IEC/ISA SP50 универсальной промышленной сети;

- прикладной уровень, включающий элементы из проекта ISP/Profibus.

Основная область применения этой сети - самый нижний урівень распределенной системы автоматизации с обвязкой устройств, работающих во взрывоопасных средах и использующих сеть, как для информационного обмена, так и для собственной запитки.

У протоколов FF и Profibus-PA много общего и именно поэтому со стороны европейской ассоциации по стандартизации CENELEC сделано предложение о включении FF в стандарт EuroNorm 50170 в качестве самостоятельной его части.

Две особенности выделяют Foundation Fieldbus среди других ЦПС.

Во-первых, был разработан специальный язык описания оконечных устройств (Device Description Language), использование котрого позволяет подключать новые узлы к сети по широко применяемой в обычных IBM РС совместимых компьютерах технологии plug-and-play.

Достаточно физически подключить новое устройство, и оно тут же самоопределится на основании заложенного описания DD (Device Description), после чего все функциональные возможности нового узла становятся доступными в сети. При конфигурировании інженеру достаточно соединить входы и выходы имеющихся в его распоряжении функциональных блоков, чтобы реализовать требуемый алгоритм.

Пользователям доступны как типовые DD для стандартных устройств (клапанов, датчиков температуры и т.д.), так и возможность описания нестандартных изделий. Во-вторых, в отличие от других промышленных сетей, Foundation Fieldbus ориентирована на обеспечение одноранговой связи между узлами без центрального ведущего устройства. Этот поход даёт возможность реализовать системы управления, распределенные не только физически, но и логически, что во многих случаях позволяет повысить надежность и живучесть.

В Foundation Fieldbus реализованы самые сложные технологи обмена информацией: подписка на данные, режим «клиент-сервер», синхронизация распределенного процесса и т.д.

2.2.4. HART

Стандарт для передачи аналоговых сигналов значениями тока в диапазоне 4-20 мА известен уже несколько десятков лет и широко используется при создании систем АСУ ТП, в химической индустрии, теплоэнергетике, в пищевой и многих других отраслях промышленности.

Традиционно для измерения различных физических величин (давления, объема, температуры и т.д.) предлагается множество приборов с токовым выходом 4-20 мА. Достоинством данного стандарта является простота его реализации, массовое использование в приборах и возможность помехоустойчивой передачи аналогового сигнала на относительно большие расстояния. Однако при создании нового поколения интеллектуальных приборов и датчиков потребовалось наряду с передачей аналоговой информации передавать и цифровые данные, соответствующие их новым расширенным функциональным возможностям.

В середине 80-х годов американская компания Rosemount разработала протокол Highway Addressable Remote Transducer (HART). В начале 90-х годов протокол был дополнен и стал открытым коммуникационным стандартом. Вначале он был нормирован только для применения в режиме соединения «точка-точка», затем появилась возможность применять протокол в режиме многоточечного соединения («multidrop»).

Рис. 2.7. Топология сети согласно спецификации протокола HART

HART-протокол используется в двух режимах подключения. В большинстве случаев применяется соединение ォточка-точкаサ (рис. 2.7а), то есть непосредственное соединение прибора низовой автоматики (преобразователя информации, датчика, исполнительного устройства и т.п.) и не более чем двух ведущих устройств. В качестве первинного ведущего устройства, как правило, используется устройство связи с объектом (УСО) или программируемый логический контроллер, а в качестве вторичного — портативный HART-терминал или отладочный ПК с соответствующим модемом. При этом аналоговый токовый сигнал передается от ведомого прибора к соответствующему веду щему устройству. Цифровые сигналы могут приниматься или передаваться как от ведущего, так и от ведомого устройства. Так как цифровой сигнал наложен на аналоговый, процесс передачи аналогового сигнала происходит без прерывания.

В многоточечном режиме (рис. 2.7б) до 15 ведомых устройств (slave) могут соединяться параллельно двухпроводной линией с теми же двумя ведущими устройствами (master). При этом по линии осуществляется только цифровая связь. Сигнал постоянного тока 4 мА обеспечивает вспомогательное питание ведомых приборов по сигнальным линиям.

HART-протокол основан на методе передачи данных с помощью частотной модуляции (Frequency Shift Keying, FSK), в соответствии с широко распространенным коммуникационным стандартом Bell 202.

Цифровая информация передаётся частотами 1200 Гц (логическая 1) и 2200 Гц (логический 0), которые накладываются на аналоговый токовый сигнал (рис. 2.8).

Частотно-модулированный сигнал является двухполярным и при применении соответствующей фильтрации не влияет на основной аналоговый сигнал 4-20 мА. Скорость передачи данных для HART составляет 1,2 кбит/с. Каждый HART-компонент требует для цифровой передачи соответствующего модема.

Рис. 2.8. Модуляция сигнала в HART-протоколе

Благодаря наличию двух ведущих устройств каждое из них может быть готово к передаче через 270 мс (время ожидания). Цикл обновления данных повторяется 2-3 раза в секунду в режиме запрос/ответ и 3-4 раза в секунду в пакетном режиме. Несмотря на относительно большую длительность цикла, в большинстве случаев он является достаточным для управления непрерывными процессами.





Дата публикования: 2015-02-22; Прочитано: 988 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...