Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Минералогия скарнов



Скарны - это породы, которые образуются метасоматическим путем на контакте карбонатных вмещающих пород с магматическими, чаще всего кислыми, гранитоидными породами.
 
 

Следует отметить, что скарны и скарноподобные породы могут возникать и при внедрении ультраосновных, основных, щелочных магм, и даже на контакте карбонатных и немагматических силикатных толщ, но все-таки наиболее типичны случаи внедрения в карбонатные породы гранитоидных магм, поскольку именно тогда проявляется контрастность контактирующих сред по химизму, а значит, наиболее активно идет обмен компонентами. Такой обмен вызывает изменение минерального состава пород и в приконтактовой части гранитного массива (эндоскарны), и особенно - в приконтактовой части со стороны вмещающих пород (экзоскарны).

Поскольку он происходит путем замещения обеих пород, то к нему приложим термин биметасоматоз. Считают, что скарны образуются на глубине 3–7 км и образованию их способствует возникновение трещин контракции (усадки объема при остывании магматических пород).

В зависимости от состава вмещающих карбонатных толщ образуются скарны двух типов - магнезиальные и известковые.

1. Магнезиальные скарны образуются на контакте с магнезиальными карбонатными толщами - доломитами, доломитовыми мраморами - CaMg(CO3)2. Поэтому для них характерна ассоциация минералов, богатых магнием, или двойных солей Са и Mg:

форстерит Fo Mg2[SiO4],

флогопит Phl KMg3[AlSi3O10](OH,F)2,

шпинель Sp MgAl2O4,

диопсид Di CaMg[Si2O6],

энстатит En Mg2[Si2O6],

минералы группы хондродита-гумита -

Mg2[SiO4]×Mg(F,OH)2-4Mg2[SiO4]×Mg(F,OH)2,

тремолит Trem Ca2Mg5[Si4O11]2(OH)2,

иногда:

магнез-й турмалин NaMg3Al6[Si6O18](BO3)3(OH,F)3+1.

2. Известковые (известковистые) скарны образуются на контакте с мраморизованными известняками и мраморами, поэтому здесь преобладают кальциевые силикаты:

волластонит Ca3[Si3O9],

гроссуляр-андрадит Ca3Al2[SiO4]3 - Ca3Fe2[SiO4]3,

диопсид-геденбергит CaMg[Si2O6] - CaFe[Si2O6],

везувиан Ca10(Mg,Fe)2Al4[SiO4][Si2O7]2(OH,F)4,

эпидот Ca2FeAl2[SiO4][Si2O7]О(OH),

тремолит Ca2Mg5[Si4O11]2(OH)2.

Температура скарнообразования различна: для магнезиальных - 850–650 оС, известковых - 800–400 оС. Непосредственно у контакта при максимальном прогреве температура может подниматься до 1000 оС.

По мере остывания зоны контакта, вследствие контракции скарнированных пород, развивается трещиноватость, и в трещины начинают поступать сначала пневматолитово-гидротермальные, а затем – гидротермальные растворы, которые отделяются при кристаллизации магматических пород. Растворы активно изменяют более ранние скарновые минералы, поэтому в образовании скарнов различают собственно скарновый этап (подразделяемый на раннескарновый и позднескарновый) и этап более поздних наложений, главным образом гидротермальных. Эти наложения приводят не только к
перекристаллизации скарновых минералов и замещению раннескарновых минералов позднескарновыми, но и к отложению в скарнах гидротермальных минералов, компоненты которых приносятся растворами из магматического очага. Среди них такие очень важные в промышленном отношении, как шеелит Ca[WO4], молибденит MoS2, минералы Be, Sn, Fe, Co, Pb + Zn, Cu, самородное Au.

По характеру рудной специализации среди скарнов выделяют железорудные скарны (магнетитовые); меднорудные скарны (с халькопиритом, борнитом, халькозином); вольфрамоносные скарны (с шеелитом); скарны с полиметаллическим оруденением (сфалеритом, галенитом); скарны с кобальтовым оруденением (кобальтином) –; золоторудные скарны; бороносные скарны (с людвигитом (Mg,Fe)2Fe[BO3]O2).

55. МОВ: геологические задачи, основы методики, построение и геологическая интерпретация временных разрезов.

Классификация методов сейсморазведки. Её можно проводить по типам применяемых волн. Основными методами является метод отраженных волн (МОВ), и метод преломленных (головных) волн (МПВ). В них используются волны разных типов поляризаций: продольные, поперечные и обменные. В отдельных методах выделяют различные модификации в зависимости от сложностей сейсмогеологических условий и решаемых геологических задач. На основе цифровой регистрации и соответствующей обработки разработаны более эффективные методы общей глубинной точки отражения (ОГТ).

В зависимости от решаемых геологоразведочных задач различают следующие виды сейсморазведочных работ:

- глубинные сейсмические зондирования (ГСЗ). ГСЗ применяют для изучения поверхности кристаллического фундамента и нижележащих слоев земной коры, их соотношения со структурными особенностями осадочн. чехла, а также для изучения крупных тектонич-их элементов земной коры. Основные границы раздела имеют следующие значения граничных скоростей головных волн: поверхность кристалл. фунд-та (Vr =6 км/с); граница Конрода, м.у. гранитным и базальтовым слоями (Vr =7 км/с); подошва земной коры – граница Мохо (Vr =8 км/с).

- региональные сейсморазведочные работы. Их задачи – изучение наиболее крупных особенностей геологического строения, определение глубины и рельефа кристаллического фунд-та, выявление в осадочном чехле сводов, валов, впадин и др. Выполняются по длинным, до 100-ен км, профилям, пересекающим крупные геологические регионы. Исследования этим методом комплектуют МОВ, МПВ, а также обменных проходящих волн.

- поисковые сейсморазведочные работы. Их задача – обнаружение особенностей геологич. разреза, благоприятного для образования м-ий полез. иск. Так, при поисках нефтегазоносных м-ий интерес будут представлять выявление антиклинальных складок, соляных копалов, зон стратиграфического и литологического несогласия. Основным при разведке явл. МОВ в его различных модификациях.

- детальные сейсморазведочные работы (ДСР). Их задача подготовка перспективных площадей, выявленных при поисково-съемочных работах, под глубокое разведочное бурение. В последние время популярной является методика называемая прогнозированием геологического разреза (ПГР). Она включает поиск неструктурных ловушек нефти и газа, изучение вещественного состава разреза, и прогноз наличия в нем углеводородного сырья. При изучении нефтепромысловых свойств пород разреза изучают динамические и кинематические характеристики сейсм.волн (V продольных и поперечных волн, интенсивности, упругие константы горных пород). ДСР проводят с использованием ОГТ, РНП, скважинных наблюдений, продольных, поперечных, обменных и проходящих волн.

Методы и методика сейсморазведки: Основные методы это МОВ и МПВ, которые позволяют квартировать имеющиеся на глубине границы раздела. Рассмотрим 2-ух слойную среду в ней упругая волна может пройти от источника возбуждения к приемнику 3 путями (сейсморазведка 1, стр.34, рис 12),:

- прямая волна распространяется по прямой со скоростью V1;

- отраженная волна подходит к границе раздела под некоторым углом и отражаясь возвращается на поверхность к приемнику со скоростью V1;

- преломленная волна подходит к поверхности под критическим углом со скоростью V1. Преломившись, она распространяется как головная со скро-тью V2 и возвращается к поверхности со скоростью V1.

Кривая зависимости времени пробега (прихода) волны от расстояния ее пробега – это годограф. По ним вычисляют глубину залегания подстилающего слоя. Из рис. 13 видно, что первые вступления волн, зафиксироыванные приемником, будут принадлежать прямой Х < Хп или головной волне Х > Хп. На расстоянии Хп эти волны пересекаются, и головная волна выходит на первые вступления, ближе Хкр головная волна не существует, и на этом расстоянии времена пробега головной и отраженной волн совпадают, т.к. они проходят по одному пути. Но отраженные волны никогда не наблюдаются в первых вступлениях, они явл. малоамплитудными, а преломленные всегда регестрируются на больших расстояния до 1000 км – эти особенности годографов определяют методику работ на отраженных и преломленных волнах. => в МПВ расстояние от источника до первого приемника д.б. большим, чтобы фиксировать преломленную волну в первых вступлениях. В МОВ надо выявлять фазы, которые никогда не выходят в первые вступления и имеют малую амплитуду => в МОВ регистрация ведется на малых расстояниях.

Прямые кинематические задачи метода отраженных волн при общем пункте возбуждения (ОПВ). Простейшей является задача о годографе для плоскопараллельного слоя. Выберем систему координат так, чтобы плоскость OXY совпадала с поверхностью земли, ось ОХ была направлена вдоль профиля, а ось OZ — вниз. Обозначим скорость продольных волн в слое и подстилающем полупространстве v1 и v2 соответственно, а мощность слоя — h (рис. 1.19). Расположим точечный источник возбуждения в начале координат, приемник—на расстоянии х от источника. Найдем время прихода отраженной от подошвы слоя волны в точку расположения приемника. Согласно закону Снеллиуса, уголы OBA1 и A1BA равны, т.е. треугольник ОВА равнобедренный, так как нормаль к границе в точке В совпадает с направлением вертикали. Следовательно, А1А=ОА1 и длина пути ОВА

Как следует из выражения 1.24 годограф отраженной волны в

рассматриваемом случае – гипербола, минимум которой расположен в точке х=0. Правая и левая (при х<0) ветви годографа симметричны относительно оси 0Z. При увеличении х t(x) стремится к асимптотическому значению t(x)=x/v. Годограф t(x) расположен внутри угла, образуемого двумя ветвями t=±x/v.

Рассмотрим теперь случай, когда разрез представлен горизонтально-слоистой пачкой слоев, а скорости в слоях и их мощности v1, v2,……, vn и h1, h2,.., hn соответственно. Построим в первом слое луч, выходящий из источника под углом θ1 к вертикали, и определим, в какую точку профиля выйдет луч волны, отраженной, например, от четвертой границы. Траектория луча для этой волны приведена на рис. 1.20. Согласно закону Снеллиуса, имеем

В силу симметрии задачи относительно вертикальной оси ясно, что tn(x) — четная

функция, т. е. t(x)= t(-х).

При небольших удалениях приемника от источника t(x) можно аппроксимировать

зависимостью t2(x) = t0n2(x)+x2/v2эф или

(1.25) (1.26)

Но уравнение (1.25) полностью совпадает с годографом (1.24) для однородного слоя с мощностью Нэф и скоростью vэф. Величина vэф простым образом связана с мощностями и пластовыми скоростями реальной толщи:

(1.27)

Из формул (1.26) следует, что vэф2 равна сумме взвешенных квадратов пластовых скоростей. Весовые множители Δti /tn придают большую значимость тем скоростям, которые вносят больший вклад в общее время пробега.

Для выяснения смысла Hэф и vэф рассмотрим величину средней скорости vср в слоистой пачке. Как следует из выражения (1.24), при х=0 по годографу отраженной волны можно определить двойное время пробега волны по нормали от источника к соответствующей границе и обратно

(1.28)

Средняя скорость распространения волны в этом направлении

(1.29)

Сравнивая выражения (1.27) и (1.29) можно заключить, что vэф>vср и стремится к vcp, когда скорости в пластах мало отличаются друг от друга. Мощность эффективного слоя Hэф согласно выражению (1.28)

(1.30)

Но, поскольку vэф.>vср, Нэф>Н — истинной глубины до отражающей границы. Таким образом, эффективный слой — это однородный слой с мощностью и скоростью, превышающими истинную мощность слоистой толщи и среднюю скорость в ней. Найдем теперь годограф отраженной волны для слоя с наклонной подошвой (рис.1.21). Скорость волн в слое обозначим v1, а профиль проведем вкрест простирания его подошвы. Точечный источник снова расположим в начале координат так, чтобы ось OZ была направлена вниз, а ось ОХ совмещена с профилем. Рассмотрим луч падающей волны, составляющий угол θ с осью OZ. Тогда угол падения луча на границу будет θ+φ, где φ — угол наклона границы. Проведем из точки О нормаль к границе и отложим на ней отрезок 2OB. Треугольники ОВР и 0*ВР прямоугольные и конгруэнтные. Следовательно, ОР=О*Р и угол O*PO=180°—2(θ+φ), а угол OPA=2(θ+φ). Угол 0*РА является суммой вычисленных углов O*PA=180°, а точки О*, Р, А лежат на одной прямой, путь 0*Р+РА=0*А. Кинематика волн оказывается такой, какой она была бы, если вместо реального источника, расположенного в точке О, рассматривать безграничную среду со скоростью v1, в которой источник расположен в точке О*. Такой источник называют мнимым. Его использование часто значительно упрощает решение кинематических задач. При использовании мнимого источника находим путь

Но OD = О*0·sin φ=2OB sin φ, 0*D= =2OB cos φ, AD=x+OD. Остается выразить ВО через истинное значение глубины z0 до отражающей границы под источником, полученной по данным бурения: Z0=BO/cos φ.

В действительности целесообразнее использовать не глубину по вертикали, а минимальное расстояние от источника до границы OB — эхоглубину h, и при известной скорости v1 ее можно получить, если приемник будет расположен в непосредственной близости от источника. Имея в виду, что BO = h, окончательно находим

Как видно из выражений (1.31), t(x) — это гипербола, но ее минимум смещен вдоль профиля по восстанию границы на расстояние 2h·sin φ. Это смещение называют сейсмическим сносом. Использование эффективных скорости и мощности позволяет годограф волны, отраженной от границы в толще, состоящей из наклонных пластов, представить в виде

56. МПВ: геологические задачи, основы методики, определение скоростей и построение границ.

Методы преломленных волн (МПВ), основы методики, построение преломляющих границ: В методе преломленных волн в отличие от метода отраженных изучаемые волны основной путь проходят по направлениям, близким к горизонтали, вдоль преломляющей границы. Предположение о том, что преломляющая граница на всем интервале приемной расстановки является плоской, справедливо далеко не всегда. Поскольку в МПВ изучается скорость распространения волн вдоль той или иной границы, а не эффективная скорость, менее чувствительная к изменчивости скорости в отдельных пластах, интерпретационные модели для МПВ должны учитывать как возможную криволинейность преломляющих границ, так и изменчивость скорости в породах под преломляющей границей по горизонтали. При наблюдениях на больших расстояниях от источника возбуждения регистрируются волны, которые большую часть пути проходят в одном из пластов изучаемой толщи, вследствие эффекта преломления. К числу таких относят головные и рефрогированные, которые объединены понятием преломленных волн. Эти волны имеют сходные динамические и кинематические свойства => их объединяют в МПВ. МПВ не имеет ограничений по глубине исследований.

Интерпретация данных МПВ дает возможность:

- является мощным инструментов в исследовании зем.коры, изучаются слои более мелкого масштаба;

- позволяет получить несколько границ преломления, а также форму преломляющей границы;

- позволяет определить граничную скорость, характеризующую физ. св-ва пласта, подстилающего изучаемую границу. Это существенно облегчает стратиграфическую привязку сейсмических границ.

- определение параметров глубины залегания и разрывных нарушений, а также контактов;

- поиски и разведка п.и, а также разведка нефти и газа, бокситов и соли;

- при поиске артезианских и термальных вод;

- изучение уровня грунтовых вод.

Особенности метода: Методом ПВ могут определяться как горизонтальные, так и наклонные границы.

Рассмотрим линейный годограф головной волны вдоль X (рис), при наклонной поверхности годографы не будут обладать симметрией......

Построение преломляющих границ: для этого используют систему встречных годографов. Рассмотрим следующий способ t0l, он основан на допущениях:

- при пологозалегающих границах, когда радиус кривизны преломляющей границы много >> глубины их залегания;

- при отсутствии проницания;

- при плавном изменении граничной скорости.

Рассмотрим систему встречных годографов (рис.) на нем П и Г2 - это годографы, из пунктов возбуждения Ol и О2, увязанных во взаимных точках, во взаимное время Т, t1 и t2 - это время прихода волны из пунктов возбуждения в произвольную точку S.

Выразим t1 и t2:

t1 = t O1 AB + t BS;

t2 = t O2 ED + t DS;

T = t Ol AB + t BD +t O2 ED.

Из треугольников DCS и BCS выразим: t BS = t DS = h/Vcpeдн.*cos i; t BD = 2 t DS = 2h*tg i/Vграничная; V граничная = Vсредн./sin i;

подставив это в tl + t2 - T= t BS + t DS - t BD, получим, что оно соответствует tOl = 2h* cos i/ V средн. - это есть линейный годограф головной волны. Т.о. по известным tl и t2 в некоторой известной точке S, а также взаимному времени Т можно вычислить время tOl и построить его линию интервале встречных годографов. Также можно вычислить глубину до преломляющей границы:

h = k tOl, где к = (Vсредн* Vграничная)/(2 √ V2граничная - V2средн).

Vсредняя определяется по каротажу или годографу.

Решаемые задачи: позволяет уверенно изучать границу на участке АЕ (рис.), для прослеживания протяженности границы строят сводный годограф.

57. Нейтронные методы ядерной геофизики: принципы, задачи.

Нейтронные методы ГИС заключаются в облучении породы потоками быстрых нейтронов (энергия больше 0,5 МэВ) и регистрации плотности нейтронов, замедлившихся до надтепловых или тепловых энергий или гамма-квантов, возникающих при захвате тепловых нейтронов ядрами атомов. Тепловыми считают нейтроны с энергией 0,025—0,01 эВ. Нейтроны несколько более высоких энергий — до сотен электрон-вольт называют надтепловыми. Наибольшей замедляющей способностью обладают элементы, масса ядра которых близка к массе нейтрона. Поэтому аномальным замедлителем является водород (в породах с порами, заполненными водой или нефтью, нейтроны замедляются уже на небольших расстояниях от источника)

Тепловые нейтроны относительно легко захватываются элементами-поглотителями. Аномальные поглотители — хлор, бор, кадмий, литий, железо, марганец.

Таким образом, можно реализовать четыре метода, основанных на взаимодействии стационарных потоков нейтронов с веществом: нейтрон-нейтронный метод по надтепловым нейтронам (ННМ-НТ); нейтрон-нейтронный метод по тепловым нейтронам (ННМ-Т); нейтронный гамма-метод (НГМ) и нейтронный гамма-метод спектральный

(НГМ-С). При реализации каждого из них излучаются быстрые нейтроны, а регистрируются, соответственно, надтепловые нейтроны, тепловые нейтроны, вторичные гамма-кванты. Изучают соответствующие пространственные распределения. (Первые три метода интегральные, последний — спектральный)

H. к.(-Нейтронный каротаж) с источником непрерывного действия не даёт, однако, возможности надёжно отличать пласты, насыщенные водой и нефтью, т. к. они как замедлители нейтронов неразличимы. Для этой цели эффективнее оказался H. к. с импульсным источником (импульсный H. к.). Пластовая вода обычно содержит минеральные соли, напр. NaCl, в то время как в нефти они отсутствуют. Из-за поглощения нейтронов в Cl время жизни тепловых нейтронов в пласте, содержащем воду, меньше, чем в нефтяном пласте. В импульсном H. к. нейтроны испускаются в течение коротких интервалов времени - от 1 до 10 мксек, а регистрируются лишь те сигналы от детектора, к-рые приходят через время t> после нейтронного импульса. При этом число регистрируемых сигналов будет зависеть от . B пласте, содержащем воду, для к-рого . невелико, к моменту t остаётся мало нейтронов и интенсивность регистрации мала. В пласте же, насыщенном нефтью, больше и нейтронов остаётся больше.

Нейтронные методы позволяют решать следующие задачи: литологическое расчленени разреза; определение пористости пород; определение положения газожидкостного контакта. Методы ННМ-Т и НГМ позволяют определить местоположение водонефтяного контакта при значительной минерализации пластовых вод и небольшой зоне проникновения.Методы ННМ-НТ и ННМ-Т применяют при поисках угольных пластов (уголь содержит до 12 % водорода) и для выделения пород с высоким содержанием бора. Метод ННМ-Т используют для выделения в разрезах скважин пород, содержащих элементы с большим сечением захвата: ртути, лития, хлора, кобальта, вольфрама, марганца, сурьмы, кадмия и некоторых редкоземельных. Железо, марганец, ртуть и хромиты идентифицируются НГМ.

Метод НГМ целесообразно использовать при поисках углей, поскольку его показания меньше зависят от диаметра скважины, чем показания ГГМ-П.

Нейтронный гамма-метод спектрометрический (НГМ-С) применяют для определения положения водонефтяного контакта по хлору, для поисков железных, хромитовых, марганцевых, никелевых и других руд. Реализация НГМ-С сопряжена с серьезными техническими трудностями.

Нейтронный гамма- каротаж (НГК) основан на изучении эффекта взаимодействия потока нейтронов с веществом пород. Практически зеркально отражает кривую ГК. Более высокие значения соответствуют плотным породам с низким содержанием воды (ангидрит, карбонаты), низкие - водонасыщенным менее плотным породам (аргиллитам). Единица измерения – имп/мин (импульсы в минуту) или «условные единицы»





Дата публикования: 2015-02-18; Прочитано: 977 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...