Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные модели теории механизмов и машин



1. Простейшая модель, которой будем пользоваться в дальнейшем – звено. В зависимости от решаемых задач эта модель может обладать разными свойствами (жесткое звено, упругое звено). На первых этапах мы будем считать звено недеформируемым и рассматривать его как абсолютно твердое тело (жесткое звено). Эта модель используется для расчета поведения одной или нескольких жестко связанных между собой деталей. В зависимости от вида движения звенья имеют традиционные названия. Неподвижное звено называется стойкой; на схемах его подчеркивают косой штриховкой. Звено, совершающее вращение вокруг неподвижной оси, называется кривошипом. Если звено совершает качательное движение (неполный оборот), то его называют коромыслом. Звено, совершающее возвратно-поступательное движение, - ползун. Звено, совершающее плоское движение - шатун. Если звено движется поступательно относительно подвижного звена, то такое звено называют кулисой.

2. Модель подвижного соединения двух звеньев называется кинематической парой (КП). Эта модель обладает следующими свойствами: элементы кинематических пар считаются недеформируемыми, а связи, накладываемые кинематической парой, являются голономными, стационарными и удерживающими.

3. Соединив некоторое число звеньев между собой с помощью КП, получим модель, обладающую новыми свойствами – кинематическую цепь. Кинематическая цепь – совокупность звеньев, связанных между собой кинематическими парами (рис.1.10). Она характеризуется числом степеней подвижности или, иначе говоря, числом двигателей, которые надо подсоединить к цепи для того, чтобы полностью определить положение всех звеньев цепи.

Билет №2.Основные модели ТММ (механизм, нормальный механизм, структурная группа, группа Ассура) и их свойства. Число степеней свободы и число степеней подвижности. Формула Малышева.

Важной характеристикой КП является число степеней свободы s, которое оставляет КП в относительном движении соединяемых ею звеньев. Очевидно, что s + k = 6, где k – число связей, накладываемых КП. Например, если КП оставляет одну степень свободы в относительном движении (s = 1, k = 5), то такую пару называют одноподвижной.

Самое большое число степеней свободы в относительном движении, которое может оставить одна КП, равно пяти, так как КП должна накладывать хотя бы одну связь.

Кинематическая цепь, в которой одно из звеньев принято за неподвижное, называется механизмом. Поскольку неподвижное звено не обладает подвижностью, для определения числа степеней подвижности механизма W это звено нужно вычесть из числа N:

. (1.2)

Формула (1.2) называется формулой Малышева–Сомова. Пользуясь формулой (1.2), определим число степеней подвижностиисполнительного механизма промышленного робота, показанного на рис.1.11. Отметим, что все КП в этом механизме – одноподвижные (одна поступательная и две вращательных), тогда: W =6(4 – 1) – 5×3= = 3.

Следовательно, для того, чтобы полностью и однозначно определить положение звена 4, необходимо задать 3 входные координаты; на рис.1.11 они обозначены q1, q2, q3. Если это условие будет выполнено, то такой механизм – нормальный. Нормальным механизмомназывается такой, в котором число входов совпадает с числом степеней подвижности. Модель «нормальный механизм» была предложена проф. М.З.Коловским; она удобна тем, что поддается геометрическому анализу. У рассмотренного механизма (рис.1.11) имеется еще одно важное свойство – каждое звено соединено с предыдущим одной КП. В этом случае говорят, что механизм имеет структуру «дерева». В этом случае .

Формула Малышева–Сомова (1.2) для механизма со структурой «дерева» приобретает следующий вид: (степень подвижности механизма равна сумме степеней подвижности всех КП).

Однако у механизма может быть большое число звеньев и, следовательно, система уравнений, описывающая такой механизм, будет содержать большое число уравнений. Для того, чтобы упростить анализ сложного механизма, удобно разбить его на более простые модели – структурные группы.

Следует отметить, что рассмотренная модель механизма с жесткими звеньями имеет число степеней подвижности, равное числу степеней свободы. Если модель жесткого звена, входящего в состав механизма, заменить на модель упругого звена, то число степеней свободы увеличится, а число степеней подвижности не изменится. Модели механизмов с упругими звеньями рассматриваются в специальных разделах ТММ и в дисциплине «Колебания в машинах».

Структурная группа – кинематическая цепь, в которой число входов равно числу степеней подвижности (Wц=n). Такое понятие структурной группы было предложено проф. М.З. Коловским. Простая структурная группа– такая, в которой нельзя выделить структурную группу с меньшим числом звеньев. В n -подвижной структурной группе число входов равно n.

В механизме со структурой «дерева» каждое звено является структурной группой. На рис.1.11 можно выделить три структурных группы (подвижные звенья 2, 3, 4 с соответствующими входными координатами (q1, q2, q3), так как каждая группа имеет одно звено (N = 1), одну одноподвижную КП (p1 = 1), один вход (n = 1). Подставляем эти значения в (1.1): .

Структурная группа, как и нормальный механизм, поддается геометрическому анализу. Частным случаем структурной группы является группа, получившая название группы Ассура, в которой число степеней подвижности равно нулю.





Дата публикования: 2015-02-18; Прочитано: 1192 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...