Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Приклади дискретних випадкових величин та їх законів розподілу



Приклад №1. Проводиться незалежних випробувань. В кожному випробуванні подія А може з’явитися з однією і тією ж самою ймовірністю . Позначимо через число появ події А у цих випробуваннях. Це – випадкова величина. Задамо закон її розподілу:

    ... ...
... ...

Ймовірність появи подій в випробуваннях визначається за формулою Бернуллі:

.

Такий розподіл називається біномним.

Якщо, скажімо, гральний кубик підкинуто тричі та нас цікавить закон розподілу випадкової величини – числа випадань чотирьох очок, то біномний розподіл має вигляд ():

       

Приклад №2. Якщо проводяться випробування за схемою Бернуллі, причому число – велике, а – мале, то, як відомо, для обчислення слід користуватися формулою Пуассона

,

де – середнє число появ події в різних серіях випробувань. Одержуємо закон розподілу Пуассона ймовірностей масових рідкісних подій.

Зауважимо, що Пуассон вивчав потоки подій – послідовності подій, які з’являються у випадкові моменти часу. Найпростішим (пуассонівським) називається потік подій, який має наступні властивості:

а) стаціонарність: ймовірність появи подій на будь-якому проміжку часу не залежить від початку відліку, а залежить тільки від і ;

б) відсутність післядії: ймовірність появи подій на будь-якому проміжку часу не залежить від того, з’являлися чи ні події в момент часу, що передує початку даного проміжку;

в) ординарність: поява двох і більшого числа подій за малий проміжок часу практично неможлива.

Інтенсивністю потоку називається середнє число подій, які з’являються протягом одиниці часу.

Для найпростішого потоку подій має місце формула:

.

Приклад №3. Нехай проводяться незалежні випробування, у кожному з яких ймовірність появи події А дорівнює . Випробування закінчуються, як тільки з’явиться подія А.

Позначимо через число випробувань, які потрібно провести до першої появи А. Це – дискретна випадкова величина, яка може приймати значення . Ймовірність того, що , дорівнює ; що , дорівнює , і т.д. Ймовірність того, що , дорівнює . Одержуємо такий розподіл:

    ... ...
... ...

Цей розподіл називають геометричним.

Приклад №4. Нехай в партії з виробів є стандартних . З партії випадково відібрано виробів. Потрібно скласти закон розподілу дискретної випадкової величини – числа стандартних виробів серед відібраних.

Випадкова величина може приймати значення . Ймовірність того, що , визначаємо за формулою

.

Одержаний розподіл називають гіпергеометричним розподілом ймовірностей. Він визначається трьома параметрами – . При гіпергеометричний розподіл близький до біномного.





Дата публикования: 2015-03-26; Прочитано: 491 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...