Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Декартово умножение множеств



Назовем (х, у) упорядоченной парой, а х и у – компонентами этой пары. При этом считают, что 1 у1) = (х22), если х1 = х2 и у1 = у2.

__________________________________________________________________

Определение 9. Декартовым произведением множеств А и В назы­вают множество А´В, элементами которого являются все пары(х,у), такие, что х Î А, уÎВ, т.е. А´В = {(х,у)/хÎ А, уÎ В}.

_____________________________________________________________________________________________

Найдем, например, декартово произведение множеств А = {1,3} и В ={2,4,6}.

А´В = {(1, 2);(1, 4);(1, 6);(3, 2);(3, 4);(3, 6)}.

Операцию, при помощи которой находят декартово произведе­ние, называют декартовым умножением множеств.

Декартово умножение множеств не обладает ни свойством комму­тативности, ни свойством ассоциативности, но связано с операциями объединения и вычитания множеств дистрибутивными свойствами:

для любых множеств А, В, С имеют место равенства:

(А ÈВ)´ С = (А´С) È (В´С),

(А\В)´С = (А´С)\(В´С).

Для наглядного представления декартова произведения числовых множеств часто используют прямоугольную систему координат.

Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.

Изобразим на координатной плоскости декартово произведение множеств А и В, если:

a) A = {2, 6}; B ={1,4}, б) А = {2, 6}; В = [1,4], в) А = [2, 6]; B =[1,4].

В случае а) данные множества конечны и можно перечислить элементы декартова произведения.

А´В = {(2, 1); (2, 4); (6, 1); (6, 4)}. Построим оси координат и на оси ОХ отметим элементы множества А, а на оси ОУ – элементы множества В. Затем изобразим каждую пару чисел множества А´В точкам на координатной плоскости (рис.7). Полученная фигура из четыре точек и будет наглядно представлять декартово произведение данных множеств А и В.

В случае б) перечислить все элементы декартова произведения множеств невозможно, т.к. множество В – бесконечное, но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 2, либо 6, а вторая компонента – действительное число из промежутка [1,4].

Все пары, первая компонента которых есть число 2, а вторая пробегает значение от 1 до 4 включительно, изображаются точками отрезка СД, а пары, первая компонента которых есть число 6, а вторая – любое действительное число из промежутка [1,4], – точками отрезка РS (рис.8). Таким образом, в случае б) декартово произведение множеств А и В на координатной плоскости изображается в виде отрезка СД и РS.

Рис. 7 Рис. 8 Рис. 9

Случай в) отличается от случая б) тем, что здесь бесконечно не только множество В, но и множество А, поэтому,первой компонентой пар, принадлежащих множеству А ´В, является любое число из промежутка [2, 6]. Точки, изображающие элементы декартова произведения множеств А и В, образуют квадрат СДЕL (рис. 9). Чтобы подчеркнуть, что элементы декартова произведения изображаются точками квадрата, его можно заштриховать.

Контрольные вопросы

1. Покажите, что решение следующих задач приводит к образованию декартова произведения множеств:

а) Запишите все дроби, числителем которых является число из множества А = {3, 4}, а знаменателем – число из множества В = {5, 6, 7}.

б) Запишите различные двузначные числа, используя числа 1, 2, 3, 4.

2. Докажите, что для любых множеств А, В, С справедливо раве­нство (А È В)´С = (А´С) È (В´С). Проиллюстрируйте его выпол­нимость для множеств А = {2, 4, 6}, В= {1,3, 5}, С = {0, 1}.

3. Какую фигуру образуют точки на координатной плоскости, если их координаты являются элементами декартова произведения множеств А = {– 3, 3} и В = R

4. Определите, декартово произведение каких множеств А и В изо­бражено на рисунке 10.

а) б) в)

Рис. 10





Дата публикования: 2015-03-26; Прочитано: 827 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...