Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнение Бернулли



Выделим в стационарно текущей идеальной жидкости (физическая модель - воображаемая жидкость, в которой нет сил внутреннего трения) трубку тока, которая ограничена сечениями S 1 и S 2, (рис. 1). Пусть в месте сечения S 1 скорость течения ν 1, давление p1 и высота, на которой это сечение расположено, h 1. Аналогично, в месте сечения S 2 скорость течения ν 2, давление p2 и высота сечения h 2.


Рис.1

За бесконечно малый отрезок времени Δt жидкость двигается от сечения S 1 к сечению S 1', от S 2 к S 1'.

По закону сохранения энергии, изменение полной энергии E2-E1 идеальной несжимаемой жидкости равно работе А внешних сил по перемещению массы m жидкости:

(1)

где E1 и E2 - полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно.

С другой стороны, А - это работа, которая совершается при перемещении всей жидкости, расположенной между сечениями S 1 и S 2, за рассматриваемый малый отрезок времени Δt. Чтобы перенести массу m от S 1 до S 1' жидкость должна переместиться на расстояние l 1= ν 1Δt и от S 2 до S 1' - на расстояние l 2= ν 2Δt. Отметим, что l 1 и l 2 настолько малы, что всем точкам объемов, закрашенных на рис. 1, приписывают постоянные значения скорости ν, давления р и высоты h. Следовательно,

(2)

где F1 = p1 S 1 и F2 = - p2 S 2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис. 1).

Полные энергии E1 и E2 будут складываться из кинетической и потенциальной энергий массы m жидкости:

(3)

(4)

Подставляя (3) и (4) в (1) и приравнивая (1) и (2), получим

(5)

Согласно уравнению неразрывности для несжимаемой жидкости, объем, занимаемый жидкостью, всегда остается постоянным, т. е.

Разделив выражение (30.5) на ΔV, получим

где ρ - плотность жидкости. Поскольку сечения выбирались произвольно, то

(6)

Выражение (6) получено швейцарским физиком Д. Бернулли (1700-1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Из его вывода видно, что уравнение Бернулли - форма закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Уравнение хорошо выполняется и для реальных жидкостей, для которых внутреннее трение не очень велико.

Величина р в формуле (6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина ρν2/2 - динамическим давлением, величина ρgh - гидростатическое давление.

Для горизонтальной трубки тока (h 1= h 2) выражение (6) будет вид

(7)

где p+ρν2/2 называется полным давлением.

Из уравнения Бернулли (7) для горизонтальной трубки тока и уравнения неразрывности видно, что при течении жидкости по горизонтальной трубе, которая имеет различные сечения, скорость жидкости больше в более узких местах, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно увидеть, установив вдоль трубы ряд манометров (рис. 2).


Рис.2

Данный опыт показывает, что в манометрической трубке В, которая прикреплена к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, которые прикрепленны к широкой части трубы, что соответствует уравнению Бернулли.

Так как динамическое давление зависит от скорости движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито - Прандтля (рис. 3), состоящая из двух изогнутых под прямым углом трубок, с присоединенными к манометру противоположными концами.


Рис.3

С помощью одной из трубок измеряется полное давление (р0), с помощью другой - статическое (р). С помощью манометра измеряют разность давлений:

(8)

где ρ0 - плотность жидкости в манометре. С другой стороны, согласно уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:

(9)

Из формул (8) и (9) получаем искомую скорость потока жидкости:

Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 4). Струя воды подается в трубку, которая открыта в атмосферу, значит давление на выходе из трубки равно атмосферному. В трубке сделано сужение, по которому вода течет с большей скоростью. В данном месте давление меньше атмосферного. Такое же давление деалется и в откачанном сосуде, связанным с трубкой через разрыв, сделанный в ее узкой части. Воздух переносится вытекающей с большой скоростью водой из узкого конца. Таким способом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. =133,32 Па).


Рис.4

Уравнение Бернулли также используют для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью,с маленьким отверстием в боковой стенке на некоторой глубине ниже уровня жидкости (рис. 5).


Рис.5

Рассмотрим два сечения (на уровне h 1 свободной поверхности жидкости в сосуде и на уровне h 1 выхода ее из отверстия) и применим уравнение Бернулли:

Так как давления р1 и р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р12, то уравнение будет иметь вид

Из уравнения неразрывности мы знаем, что ν 2/ ν 2= S 1/ S 2, где S 1 и S 2 - площади поперечных сечений сосуда и отверстия. Если S 1>> S 2, то слагаемым ν 12/2 можно пренебречь и

Это выражение получило название формулы Торричелли.





Дата публикования: 2015-01-26; Прочитано: 497 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...