Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Функции, характеристики и примеры САЕ/САР/САМ-систем



Функции CAD-систем в ма­шиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D — по­лучение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобра­зование 2D и 3D моделей.

Среди CAD-систем различают “легкие” и “тяжелые” системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычис­лительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универ­сальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей.

Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моде­лирование процессов обработки, в том числе построение траекторий относительного движения инст­румента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов обору­дования с ЧПУ (NC — Numerical Control), расчет норм времени обработки.

Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. “Тяже­лые” системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC — Parametric Technology Corp.), СЛТ1Л (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

“Легкие” системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и др. С ростом возможностей персональных ЭВМ грани между “тяжелыми” и “легкими” CAD/CAM-системами постепенно стираются.

Функции CAE-систем довольно разнообразны, так как связаны с проектными процедурами ана­лиза, моделирования, оптимизации проектных решений. В состав машиностроительных САЕ-систем прежде всего включают программы для следующих процедур:

— моделирование полей физических величин, в том числе анализ прочности, который чаще все­го выполняется в соответствии с МКЭ;

— расчет состояний и переходных процессов на макроуровне;

— имитационное моделирование сложных производственных систем на основе моделей массо­вого обслуживания и сетей Петри.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastran, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna — в механических сис­темах, Spice — в электронных схемах, ПА9 — для многоаспектного моделирования, т.е. для моделирования систем, прин­ципы действия которых основаны на взаимовлиянии физических процессов различной природы.

Для удобства адаптации САПР к нуждам конкретных приложений, для ее развития целесообраз­но иметь в составе САПР инструментальные средства адаптации и развития. Эти средства представ­лены той или иной CASE-тсхнологисй, включая языки расширения. В некоторых САПР применяют оригинальные инструментальные среды.

Примерами могут служить объектно-ориентированная интерактивная среда CAS.CADE в системе EUCLID, содер­жащая библиотеку компонентов, в САПР T-Flex CAD 3D предусмотрена разработка дополнений в средах Visual C++ и Visual Basic.

Важное значение для обеспечения открытости САПР, се интегрируемости с другими автомати­зированными системами (АС) имеют интерфейсы, представляемые реализованными в системе форма­тами межпрограммных обменов. Очевидно, что, в первую очередь, необходимо обеспечить связи между CAE, CAD и САМ-подсистемами.

В качестве языков — форматов межпрограммных обменов — используются IGES, DXF, Express (стандарт ISO 10303-11, входит в совокупность стандартов STEP), SAT (формат ядра AC1S) и др.

Наиболее перспективными считаются диалекты языка Express, что объясняется общим характе­ром стандартов STEP, их направленностью на различные приложения, а также на использование в со­временных распределенных проектных и производственных системах. Действительно, такие форма­ты, как IGES или DXF, описывают только геометрию объектов, в то время как в обменах между раз­личными САПР и их подсистемами фигурируют данные о различных свойствах и атрибутах изделий.

Язык Express используется во многих системах интерфейса между CAD/CAM-системами. В частности, в систему CAD ++ STEP включена среда SDA1 (Standard Data Access Interface), в которой возможно представление данных об объек­тах из разных систем CAD и приложений (но описанных по правилам языка Express). CAD++ STEP обеспечивает доступ к базам данных большинства известных САПР с представлением извлекаемых данных в виде STEP-файлов. Интерфейс программиста позволяет открывать и закрывать файлы проектов в базах данных, производить чтение и запись сущностей. В качестве объектов могут использоваться точки, кривые, поверхности, текст, примеры проектных решений, размеры, свя­зи, типовые изображения, комплексы данных и т.п.

Определение CAD, САМ и CAE

Согласно предыдущему разделу, автоматизированное проектирование (computer- aided design - CAD) представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, также как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических программ для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс-инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция GAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т, и,), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования. Вот почему эти системы обычно и считаются системами автоматизированного проектирования. Более того, геометрия, определенная в этих системах, может использоваться в качестве основы для дальнейших операций в системах САЕ и САМ. Это одно из наиболее значительных преимуществ CAD, позволяющее экономить время и сокращать количество ошибок, связанных с необходимостью определять геометрию конструкции с нуля каждый раз, когда она требуется в расчетах. Можно, следовательно, утверждать, что системы автоматизированной разработки рабочих чертежей и системы геометрического моделирования являются наиболее важными компонентами автоматизированного проектирования.

Автоматизированное производство (computer-aided manufacturing - САМ) — это технология, состоящая в использовании компьютерных систем для планирования, управления и контроля операций производства через прямой или косвенный интерфейс с производственными ресурсами предприятия. Одним из наиболее зрелых подходов к автоматизации производства является числовое программное управление (ЧПУ, numerical conovl - NC). ЧПУ заключается в использовании запрограммированных команд для управления станком, который может шлифовать, резать, фрезероваггь, штамповать, изгибать и иными способами превращать заготовки в готовые детали. В наше время компьютеры способны генерировать большие программы для станков с ЧПУ на основании геометрических параметров изделий из базы данных CAD и дополнительных сведений, предоставляемых оператором. Исследования в этой области концентрируются на сокращении необходимости вмешательства оператора.

Еще одна важная функция систем автоматизированного производства — программирование роботов, которые могут работать на гибких автоматизированных участках, выбирая и устанавливая инструменты и обрабатываемые детали на станках с ЧПУ Роботы могут также выполнять свои собственные задачи, например, заниматься сваркой, сборкой и переносом оборудования и деталей по цеху.

Планирование процессов также постепенно автоматизируется. План процессов может определять последовательность операций по изготовлению устройства от начала и до конца на всем необходимом оборудовании. Хотя полностью автоматизированное планирование процессов, как уже отмечалось, практически невозможно, план обработки конкретной детали вполне может бьггь сформирован автоматически, если уже имеются планы обработки аналогичных деталей. Для этого была разработана технология группировки, позволяющая объединять схожие детали о семейства. Детали считаются подобными, если опт имеют общие производственные особенности (гнезда, пазы, фаски, отверстия и т, д.). Для аЕггомалгического обнаружения схожести деталей необходимо, чтобы бала данных CAD содержала сведения о таких особенностях. Эта задача осуществляется при помощи объектно-ориентированного моделирования или распознавания элементов.

Вдобавок, компьютер может использоваться для того, чтобы выявлять необходимость заказа исходных материалов и покупных деталей, а также определять их количество исходя из графика производства. Называется такая деятельность планированием технических требований к материалу (material requirements planning - MRP). Компьютер может также использоваться для контроля состояния станков в цехе и отправки им соответствующих заданий.

Автоматизированное конструирование (computer-aided engineering - CAE) — это технология, состоящая в использовании компыотерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации его конструкции. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических расчетов, например, способны определять траектории движения и скорости звеньев и механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Программы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей.

По всей видимости, из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite - element method - FEM). С его помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.

Как отмечалось ранее, для использования метода конечных элементов нужна абстрактная модель подходящего уровня, а не сама конструкция. Абстрактная модель отличается от конструкции тем, что она формируется путем исключения несущественных деталей и редуцирования размерностей. Например, трехмерный объект небольшой толщины может быть представлен в виде двумерной оболочки. Модель создается либо в интерактивном режиме, либо автоматически. Готовая абстрактная модель разбивается на конечные элементы, образующие аналитическую модель. Программные средства, позволяющие конструировать абстрактную модель и разбивать ее па конечные элементы, называются препроцессорами (preprocessors). Проанализировав каждый элемент, компьютер собирает результаты воедино и представляет их в визуальном формате. Например, области с высоким напряжением могут быть, выделены красным цветом. Программные средства, обеспечивающие визуализацию, называются постпроцессорами (postprocessors).

Существует множество программных средств для оптимизации конструкций. Хотя средства оптимизации могут быть отнесены к классу САЕ, обычно их рассматривают отдельно. Ведутся исследования возможности автоматического определения формы конструкции путем объединения оптимизации и анализа. В этих подходах исходная форма конструкции предполагается простой, как, например, у прямоугольного двумерного объекта, состоящего из небольших элементов различной плотности. Затем выполняется процедура оптимизации, позволяющая определить конкретные значения плотности, позволяющие достичь определенной цели с учетом ограничений на напряжения. Целью часто является минимизация веса. После определения оптимальных значений плотности рассчитывается оптимальная форма объекта. Она получается отбрасыванием элементов с низкими значениями плотности.

Замечательное достоинство методов анализа и оптимизации конструкций заключается в том, что они позволяют конструктору увидеть поведение конечного продукта и выявить возможные ошибки до создания и тестирования реальных прототипов, избежав определенных затрат. Поскольку стоимость конструирования на последних стадиях разработки и производства продукта экспоненциально возрастает, ранняя оптимизации и усовершенствование (возможные только благодаря аналитическим средствам САЕ) окупаются значительным снижением сроков и стоимости разработки.

Таким образом, технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризованного

интегрированного производства (computer - integrated manufacturing — С/М). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и CAE. С1М часто называют философией бизнеса, а не компьютерной системой.

Наконец, системы управления инженерными данными (PDM - Product Data Management) обеспечивают хранение и управление проектно-конструкторской документации разрабатываемых изделий, ведение изменений в документации, сохранение истории этих изменений и т. п.

Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается интеграцией в рамках предприятия. Мировой рынок обособленных CAD/CAM решений уже насыщен, системы близки по функциональности, и темпы роста этого сегмента рынка минимальны. По этой причине происходит усиление интеграции систем CAD/CAM/CAE с системами PDM, которые позволяют хранить и управлять проектно-конструкторской документацией на разрабатываемые изделия, вносить в документацию изменения, поддерживать хранение истории этих изменений. Распространение функций PDM-систем на все этапы жизненного цикла продукции превращает их в системы PLM (Product Lifecycle Management). Развитие систем PLM обеспечивает максимальную интеграцию процессов проектирования, производства, модернизации и сопровождения продукции предприятия и по сути имеет много общего с концепцией интегрированной поддержки жизненного цикла изделия (CALb-технологии).





Дата публикования: 2015-01-26; Прочитано: 5902 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...