Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Связь дифференциала с производной. Геометрический смысл дифференциала



Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение y ее представимо в виде

y = f' (x) x +  ( x)  x,

где первое слагаемое линейно относительно  x, а второе является в точке  x = 0 бесконечно малой функцией более высокого порядка, чем  x. Если f'(x) 0, то первое слагаемое представляет собой главную часть приращения  y. Эта главная часть приращения является линейной функцией аргумента  x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.

Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно  x часть приращения  y, равная произведению производной на приращение независимой переменной

dy = f' (x) x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx =  x. Поэтому формулу для дифференциала принято записывать в следующем виде:

dy = f' (x) dx. (4)

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M (x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол  с положительным направлением оси OX, то есть f'(x) = tg . Из прямоугольного треугольника MKN

KN = MNtg  xtg= f' (x) x,

то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение  x.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

1. d c = 0;

2. d(c u (x)) = c d u (x);

3. d(u (x)  v (x)) = d u(x)  d v (x);

4. d(u (x) v (x)) = v (x) d u (x) + u (x)d v(x);

5. d(u (x) / v (x)) = (v (x) d u (x) - u (x) d v (x)) / v 2(x).

Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u =  (x), то есть рассмотрим сложную функцию y = f((x)). Если каждая из функций f и  являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y' = f'(u)· u'. Тогда дифференциал функции

dy = f' (x) dx = f' (u) u'dx = f' (u) du,

так как u'dx = du. То есть

dy = f' (u) du. (5)

Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле (4) dx =  x, а в формуле (5) du яляется лишь линейной частью приращения функции u.





Дата публикования: 2015-01-26; Прочитано: 1208 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...