Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Химия как наука



. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человечеству в основном для того, чтобы получать из веществ природы по возможности все необходимые металлы и керамику, известь и цемент, стекло и бетон, красители и фармацевтические препараты, взрывчатые вещества и горюче-смазочные материалы, каучук и пластмассы, химические волокна и материалы с заданными электрофизическими свойствами. Поэтому все химические знания, приобретенные за многие столетия и представленные в виде теорий, законов, методов, технологий, объединяет одна-единственная непреходящая, главная задача химии. Иначе говоря, чтобы решить названную производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества.

Таким образом, основанием химии выступает двуединая проблема - получения веществ с заданными свойствами (на достижение чего направлена производственная деятельность человека) и выявления способов управления свойствами вещества (на реализацию чего направлена научно-исследовательская деятельность).

Это и есть основная проблема химии. Она же является системообразующим началом данной науки
Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения. Речь идет при этом не о частных методах изучения и превращения вещества - их множество, а о самых общих способах решения вопроса: от чего, от каких факторов зависят свойства вещества. А они зависят от четырех факторов:

1. От его элементного и молекулярного состава.

2. От структуры его молекул.

3. От термодинамических и кинетических (наличие катализаторов, воздействие материала стенок сосудов и т.д.) условий, в которых вещество находится в процессе химической реакции.

4. От высоты химической организации вещества. Первый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился во второй половине XVII века в работах английского ученого Роберта Бойля. Его исследования показали, что качества и свойства тела не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены
На втором уровне своего развития химия превратилась из науки преимущественно аналитической в науку главным образом синтетическую. Этот период связан с развитием химии органического синтеза.

На основе системы химических наук складывается химическая картина мира - взгляд на природу с точки зрения химии, определяющий при этом место и роль химических объектов и процессов во всем реальном природном многообразии. Ее содержанием является:

1. Обобщенное знание данной эпохи о том, что представляют собой объекты живой и неживой природы со стороны их химического содержания. Сюда входит учение о многообразии частиц вещества, о его химической организации.

2. Представление о происхождении всех основных типов природных объектов, их естественной эволюции.

3. Зависимость химических свойств природных объектов от их структуры.

4. Общие закономерности природных процессов как процессов химического движения (взаимодействие реагирующих веществ друг с другом и с окружающей средой).

5. Знание о специфических объектах, синтезируемых в практической деятельности химика.

31. История становления химии: характеристика основных этапов. История химии показывает, что ее развитие происходило неравномерно: периоды накопления и систематизации данных эмпирических опытов и наблюдений сменялись периодами открытия и бурного обсуждения фундаментальных законов и теорий. Последовательное чередование таких периодов позволяет разделить историю химической науки на несколько этапов:

1. Период алхимии - с древности до XVI в. нашей эры. Он характеризуется поисками философского камня, эликсира долголетия, алкагеста (универсального растворителя). Кроме того, в алхимический период почти во всех культурах практиковалось «превращение» неблагородных металлов в золото или серебро, но все эти «превращения» у каждого народа осуществлялись самыми разными способами.

2. Период зарождения научной химии, который продолжался в течение XVI - XVIII веков. На этом этапе были созданы теории Парацельса, теории газов Бойля, Кавендиша и др., теория флогистона Г. Шталя и, наконец, теория химических элементов Лавуазье. В течение этого периода совершенствовалась прикладная химия, связанная с развитием металлургии, производства стекла и фарфора, искусства перегонки жидкостей и т.д. К концу XVIII века произошло упрочение химии как науки, независимой от других естественных наук.

3. Период открытия основных законов химии охватывает первые шестьдесят лет XIX века и характеризуется возникновением и развитием атомной теории Дальтона, атомно-молекулярной теории Авогадро, установлением Берцелиусом атомных весов элементов и формированием основных понятий химии: атом, молекула и др.

4. Современный период длится с 60-х годов XIX века до наших дней. Это наиболее плодотворный период развития химии, так как в течение немногим более 100 лет были разработаны периодическая классификация элементов, теория валентности, теория ароматических соединений и стереохимия, теория электролитической диссоциации Аррениуса, электронная теория материи и т.д.

Вместе с тем в этот период значительно расширился диапазон химических исследований. Такие составные части химии, как неорганическая химия, органическая химия, физическая химия, фармацевтическая химия, химия пищевых продуктов, агрохимия, геохимия, биохимия и т.д. приобрели статус самостоятельных наук и собственную теоретическую базу.

32. Современные концепции химии: состава, строения, учение о химическом процессе. Реакционная способность вещества.

До конца XIX века химия в основном была единой целостной наукой.

Современная химическая наука, опираясь на прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц.
В начале XX века химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность.
Характерный для новейшей химии, как и для всей науки XX века, процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений.

Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX века.

Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIX века. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода - способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны.

Самостоятельной областью химии является наука о методах определения состава вещества ~ аналитическая химия. Ее основная задача - определение химических элементов или их соединений, входящих в состав исследуемого вещества, - решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, постоянный эффективный контроль за ходом технологического процесса и качеством получаемых продуктов.

Реакционная способность веществ

Химическая система - совокупность микро и макро количеств веществ, способных воздействием внешних факторов (условий) к превращениям с образованием новых химических соединений.

Реакционная способность - характеристика относительной хим. активности молекул, атомов, ионов, радикалов. Для количественной оценки реакционной способности рассматривают реакционные серии, т.е. ряды однотипных реакций, проводимых в одинаковых условиях, напр.: (стандартная реакция)

Типичные реакционные серии. Простейшая ситуация возникает при анализе изомерного состава продуктов реакции.

Квантовохимическая теория реакционной способности. Совр. теоретич. химия позволяет непосредственно рассчитать абс. константы скорости только для несложных хим. систем. В теории реакционной способности качеств. закономерности м.б. выявлены для объектов любой сложности. При этом используют разл. подходы. При эмпирич. подходе классифицируют влияние заместителей по неск. типам (эффекты сопряжения, полярные, пространственные и др.) и применяют корреляционные соотношения. Традиц. квантовохим. подход основан на активированного комплекса теории; при этом предполагается, что для всех р-ций, составляющих реакц. серию (без пространств. и соль-ватац. эффектов), остается примерно постоянным пред-экспоненц. множитель А в Аррениуса уравнении для константы скорости k = Aexp(-E./RT) (R-газовая постоянная, Т-абс. т-ра). Поэтому характеристикой реакционной способности служит энергия активации р-ции E., к-рая практически совпадает с высотой потенц. барьера на поверхности потенциальной энергии (ППЭ).

Концепция граничных орбиталей. Оценки реакционной способности особенно просты, если использовать возмущений теорию. В распространенном варианте теории возмущений энергия стабилизации представляется в виде суммы вкладов от взаимод. между мол. орбиталями реагентов. Концепцию граничных орбиталей часто применяют в качестве основы для обсуждения реакционной способности.

Альтернантные системы. Качеств. подход, не обязательно использующий теорию возмущений, сформулирован для класса сопряженных систем, наз. альтернант-ными. Они образованы из одинаковых атомов (обычно углерода) и не содержат нечетных циклов (см. Альтернантные углеводороды

Индексы реакционной способности - теоретич. величины, к-рые используют для характеристики реакционной способности на простом модельном уровне и обычно рассчитывают квантовохим. методами. Один из индексов реакционной способности-энергия стабилизации; др. индексы менее универсальны, часто они являются приближенными оценками энергии стабилизации применительно к конкретным типам р-ций. Индексы реакционной способности применимы в тех случаях, когда хим. перестройка затрагивает в осн.?-электронные системы реагентов.

Влияние среды на реакционную способность. Совр. развитие теории реакционной способности связано с изучением влияния среды на р-ции, протекающие в конденсир. фазе. (См. также Реакции в растворах).





Дата публикования: 2015-01-26; Прочитано: 676 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...