Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема (разложение определителя по строке или столбцу)



Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = ai 1 Ai 1 + ai 2 Ai 2 +... + ai n Ai n (i = )

или j- го столбца

d = a1 j A1 j + a2 j A2 j +... + an j An j (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Доказательство.

Убедимся в справедливости теоремы на примере разложения определителя 3-го порядка, например, по 1-й строке. По теореме это разложение будет иметь вид: D= = а11А11 + а12А12 + а13А13 = {с учетом определения Aij получим}= =а11(-1)2М11 + а12(-1)3М12 + а13(-1)4М13 = а11 - а12 + а13 = а1122×а33 - а23×а32) - а1221×а33 - а23×а31) + а1321×а32 - а22×а31) = =а11×а22×а33 + а12×а23×а31 + а13×а21×а32 - а13×а22×а31 - а12×а21×а33 - а11×а23×а32 = {по правилу треугольников} = = D. Аналогичный результат получается при разложении определителя по любой строке (столбцу). Fin.

Следствие. Если в i–й строке (j-м столбце) определителя D есть только один ненулевой элемент аij ¹ 0, то результатом разложения определителя по этой строке (столбцу) будет выражение D = аij×Аij.

Определители n-го порядка удовлетворяют свойствам:

1) При транспонировании определителя его значение не меняется, (то есть значение определителя не меняется при замене его строк столбцами с теми же номерами).

Доказательство:

D = = = a11×a22 - а12×а21

NB. Следовательно, строки и столбцы определителя равноправны, поэтому его свойства можно формулировать и доказывать либо для строк, либо для столбцов.

2) При взаимной перестановке любых двух строк (столбцов) определителя его знак меняется на противоположный.

Доказательство:

D = = a11×a22 - а12×а21 = - (а12×а21 - a11×a22) = -

3) Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Пусть определитель D имеет две одинаковые строки. Если поменять их местами, то, с одной стороны, величина определителя не изменится, так как строки одинаковы, а с другой стороны определитель должен поменять свой знак на противоположный по свойству 2. Таким образом, имеем: D = -D Þ D = 0.

4) Общий множитель элементов какой-либо строки (столбца) можно выносить за знак определителя.

Доказательство:

D= = la11×a22 - lа12×а21 = l(a11×a22 - а12×а21) = l .

Следствие: D = = l×m .

NB. Правило умножения определителя на число. Чтобы умножить определитель на число, надо все элементы какой-то одной его строки (столбца) умножить на это число.

5) Определитель с нулевой строкой (столбцом) равен нулю.

Доказательство. По свойству 4 вынесем общий множитель l = 0 элементов нулевой строки (столбца) за знак определителя. Получим 0×D = 0.

6) Определитель с двумя и более пропорциональными строками (столбцами) равен нулю.

Доказательство. Если вынести за знак определителя коэффициент пропорциональности двух строк (столбцов) l≠0, то получится определитель с двумя одинаковыми строками (столбцами), равный нулю по свойству 3.

7) Если каждый элемент какой-либо строки (столбца) определителя представить в

виде суммы k слагаемых, то такой определитель равен сумме k определителей, у которых элементы этой строки (столбца) заменены соответствующими слагаемыми, а все остальные элементы такие же как у исходного определителя.

Доказательство:

D= = (а11 + b1122 - (а12 + b1221 = (а11а22 - а12а21) + (b11а22 - b12а21) = = + .

Опр. n-ая строка определителя называется линейной комбинацией его остальных (n-1) строк, если ее можно представить в виде суммы произведений этих строк на соответствующие числа l1, l2, …, ln-1. Например, в определителе

3–я строка является линейной комбинацией первых двух строк.

NB. Линейная комбинация называется тривиальной, если в ней "li = 0. В противном случае линейная комбинация называется нетривиальной (if $li ¹ 0).

8 а) Если одна строка (столбец) определителя является линейной комбинацией других его строк (столбцов), то такой определитель равен нулю.

Доказательство: D =


8 б) Величина определителя не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы любой другой строки (столбца) определителя, умноженные на одно и то же число.

Доказательство:

Пусть D= Þ {к 1-й строке прибавим 2-ю строку, умноженную на число l} Þ

Þ = .

9) Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов любой другой строки (столбца) определителя равна нулю, то есть = 0 (if i ≠ j).Например, пусть

D = ¹ 0

Тогда а11А21 + а12А22 + а13А23 = 0, так как выполнено умножение элементов 1-ой строки определителя на алгебраические дополнения соответствующих элементов 2-ой строки.

Доказательство:

а11А21 + а12А22 + а13А23 = а11×(-1)2+1 + а12×(-1)2+2 + а13×(-1)2+3 =

={это есть разложение по 1-й строке определителя (-1)× = 0}= 0.

Если определитель D¹0, то по свойству 8 б) в нем всегда можно «обнулить» i-ю строку (j-й столбец) до единственного ненулевого элемента и разложить определитель по этой строке (столбцу). Применяя эту операцию нужное число раз, всегда можно из определителя n-го порядка получить определитель 2-го порядка.





Дата публикования: 2015-01-25; Прочитано: 1003 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...