Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Особенности обмена веществ в опухолях



Фенотипические особенности поведения злока­чественных клеток (способность к неограничен­ному росту, инвазии и метастазированию) реги­стрируются сравнительно легко с помощью био-


химических и молекулярно-биологических мар­керов, значительно сложнее решается проблема качественных биохимических отличий опухоле­вой клетки от нормальной.

Наиболее ранние открытия в этой области связаны с нарушениями (атипизмом) энергети­ческого и углеводного обмена, которые прояв­ляются изменением интенсивности анаэробного гликолиза (расщепление гликогена и глюкозы до пировиноградной кислоты без использования кислорода) и тканевого дыхания. В начале XX в. Отто Варбург показал, что опухолевые клетки получают необходимую им энергию в результа­те анаэробного гликолиза, превращая глюкозу в молочную кислоту. Другое важное открытие, сделанное им, состояло в том, что опухоли по­требляют меньше кислорода, чем нормальные ткани. В опухоли постоянно обнаруживается 10-30-кратное усиление анаэробного гликолиза. Усиление анаэробного гликолиза (путь Эмбдена-Мейергофа) в гиалоплазме опухолевых клеток сопровождается ослаблением тканевого дыхания, которое происходит в митохондриях. В норме усиление анаэробного гликолиза возникает как компенсаторная реакция в ответ на дефицит АТФ при недостатке кислорода. Поступление кисло­рода в клетки и активация тканевого дыхания приводят к ослаблению анаэробного гликолиза (положительный эффект Пастера). В опухолевой ткани в отличие от нормальной кислород и тка­невое дыхание не ослабляет гликолиз (отрица­тельный эффект Пастера). Некоторые исследо­ватели считают, что усиленное потребление опу­холевой тканью глюкозы и активация гликоли­за ослабляет тканевое дыхание (положительный эффект Кребтри). Усиление гликолиза и ослаб­ление тканевого дыхания прогрессивно нараста­ют по мере увеличения степени злокачественно­сти опухоли. Кроме того, в опухолевой ткани усилен пентозо-монофосфатный шунт и исполь­зование в нем глюкозы, что приводит к повы­шенному образованию рибозы и NADPH2, кото­рые необходимы для синтеза нуклеиновых кис­лот и размножения клеток.

Вследствие атипизма энергетического и угле­водного обмена потребность опухоли в глюкозе резко увеличивается, и опухоль становится «ло­вушкой» глюкозы. Опухолевые клетки приоб­ретают повышенную устойчивость к гипоксии, возникающей при колебаниях в ней кровотока и оксигенации крови, благодаря чему сохраня-



Глава 12 / ПАТОФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА



ют способность к инвазивному росту и метаста-зированию. В связи с накоплением молочной кислоты в опухоли возникает ацидоз, который может действовать отрицательно на окружающие ткани.

В опухолевых клетках существенно изменя­ются изоферментный спектр ряда ферментов энергетического обмена и их субклеточная ло­кализация в результате нарушения регуляции на геномном уровне. Опухолевая клетка облада­ет таким изоферментным набором, который по­зволяет ей адаптироваться к среде и конкуриро­вать с нормальными клетками за необходимые для размножения субстраты.

Следует подчеркнуть, что ни в злокачествен­ных клетках, ни в сыворотке онкологических больных не обнаружены ферменты, специфич­ные для рака. Речь идет либо о количественных изменениях активности, либо о преобладании того или иного изофермента. Все найденные в злокачественных опухолях изоферменты обна­руживаются в органах взрослого организма либо в эмбриональном периоде. Следует также отме­тить чрезвычайно высокую вариабельность ак­тивности ферментов в опухолях одной и той же локализации независимо от их тканевого проис­хождения и гистологической структуры. Это обусловлено гетерогенностью клеточного соста­ва опухолей человека и разной степенью их про­грессии. В злокачественных опухолях наблюда­ются изменения преимущественно тех фермен­тов, которые обеспечивают способность к росту и пролиферации клеток: увеличение активнос­ти ключевых ферментов гликолиза (гексокина-зы, лактатдегидрогеназы - ЛДГ, альдолазы и др.), ферментов синтеза ДНК (ДНК-полимеразы), фер­ментов, связанных с плазматической мембраной клеток (щелочная фосфатаза, у-глутамилтранс-фераза). Увеличение активности ферментов при злокачественном росте сопровождается наруше­нием представительства изоформ с унификаци­ей их спектра, выражающейся для ЛДГ в преоб­ладании М-субъединиц при раке желудочно-ки­шечного тракта, раке легкого, яичников, пред­стательной железы и, наоборот, Н-субъединиц при раке яичек и гемобластозах, для гексокина-зы - в преобладании анодных фракций гексоки-назы-П и гексокиназы-Ш.

Атипизм жирового обмена в опухоли прояв­ляется преобладанием липогенеза над липоли-зом, причем особенно интенсивно синтезируют-


ся липиды и липопротеиды, которые в дальней­шем идут на построение мембран вновь образу­ющихся клеток. При злокачественных опухолях у больных в сыворотке крови возрастает уровень отдельных липидов, в первую очередь нейтраль­ных жиров, эфиров холестерина, триглицеридов.

Атипизм белкового обмена и обмена нуклеи­новых кислот проявляется многообразными, подчас неоднозначными изменениями. Однако для опухоли характерно преобладание анаболиз­ма над катаболизмом белков, что приводит к возрастанию уровня протеинов, необходимых для усиленного размножения клеток. Повышенный синтез белка требует постоянной утилизации аминокислот и высоких энергозатрат, опухоль активно поглощает аминокислоты из крови даже при низкой их концентрации. Из аминокислот и пептидов в раковых клетках обнаружено мно­го серосодержащих соединений (в составе SH-групп), таких как метионин, цистеин, глу-татион, а также соединений основного характе­ра - лизин, аргинин. Параллельно с ростом опу­холи в ее клетках преобладают катаболизм уг­леводов и анаболизм нуклеиновых кислот по двум путям: рециклизации (синтеза из продук­тов распада пуриновых и пиримидиновых осно­ваний) и образования de novo из остатков глю­козы при переаминировании с генерацией осно­ваний нуклеиновых кислот. Усиленный синтез нуклеиновых кислот связан с нарушением гене­тического контроля.

Белковый обмен в опухоли изменяется не только количественно, но и качественно. Так, например, в опухоли прекращается образование ряда тканеспецифических белков (ослабление синтеза альбуминов при раке печени), возобнов­ляется синтез эмбриональных белков в связи с разблокировкой эмбриональных генов (синтез а-фетопротеина при первичном раке печени), в клетках опухоли могут синтезироваться поли­пептиды и белки, не характерные для данной ткани (синтез АКТГ, паратиреоидного гормона при мелкоклеточном раке легкого; синтез ано­мальных иммуноглобулинов при макроглобули-немии Вальденстрема, болезни тяжелых цепей, миеломной болезни). Определение этих белков в сыворотке крови используют в диагностике опу­холей.

Синтез аномальных белков и гормонов опу­холью может стать причиной тяжелых наруше­ний регуляции жизнедеятельности. Например,




Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


так называемый белок Бенса-Джонса, синтези­руемый клетками опухоли при миеломе, обла­дает низкой молярной массой, поэтому прохо­дит через клубочковый фильтр почек и опреде­ляется в моче как маркер заболевания. Усилен­ный синтез этого белка приводит к развитию парапротеинемического нефроза. Снижение син­теза органоспецифических белков может вызвать антигенное упрощение опухолевых клеток, что становится одним из механизмов ускользания от иммунного надзора.

При опухолевом процессе выявлены наруше­ния водно-минерального обмена, которые ха­рактеризуются накоплением в клетках опухоли К' и снижением Са, что способствует ограни­чению межклеточных связей и инвазивному ро­сту и метастазированию. Для опухолей также характерна гипергидратация как следствие ги-перонкии ткани и гипоонкии крови.

Атипизм структуры опухолевой ткани от­мечается на всех уровнях - тканевом, клеточном и ультраструктурном. Клеточный и ультраструк­турный атипизм проявляется полиморфизмом клеток и субклеточных структур по величине и форме, возрастанием ядерно-цитоплазматическо-го соотношения, гиперхромией ядер, изменени­ем числа хромосом, увеличением ядрышек, неод­новременным делением ядра и протоплазмы; появляются многоядерные клетки и клетки с почкованием протоплазмы, часто обнаруживают­ся митозы с аномальным расположением хромо­сом. Тканевый атипизм характеризуется изме­нением величины, формы и расположения тка­невых элементов, а также соотношения стромы и паренхимы в органе, пораженном опухолью. Нарушение структуры клеток и ткани опухоли проявляется снижением либо полной утратой специализированной функции, свойственной нормальным клеткам и тканям. Например, при гемобластозах лейкозные клетки неспособны осуществлять фагоцитоз, клетки карциномы пе­чени утрачивают способность синтезировать аль­бумин. При других опухолях, наоборот, опухо­левые клетки функционально активны. Так, при базофильной аденоме гипофиза с гиперпродук­цией АКТГ развивается болезнь Иценко-Кушин-га; при гормонпродуцирующих (паратиреоидный гормон) опухолях паращитовидных желез раз­вивается синдром Реклингаузена. В некоторых случаях при развитии новообразования проис­ходит извращение функции опухолевых клеток,


которые начинают выполнять несвойственные им функции. Так, при мелкоклеточном раке легко­го опухольтрансформированные клетки эпителия бронхов начинают продуцировать гормоны, не связанные с потребностями организма.

Опухолевая клетка запрограммирована на размножение, и этому подчинены все внутрикле­точные механизмы регуляции обмена веществ и воспроизводства структур. Для реализации этой программы формируется ее автономность - отно­сительная независимость от командных влияний организма больного. Опухолевая клетка осущест­вляет аутокринную регуляцию своей жизнедея­тельности путем продукции факторов роста. Сле­довательно, под влиянием генетического сиг­нала опухолевая клетка сама может стимулиро­вать свое собственное размножение, продуцируя митогены и их рецепторы.

В норме в процессе межклеточного взаимо­действия осуществляется контактное торможе­ние роста клеток: во время пролиферации даль­нейшее деление клетки тормозится соседними, при этом обеспечивается сохранение запрограм­мированного генетически числа клеток в дан­ной ткани. В опухоли контактное торможение заблокировано, а сама опухолевая клетка навя­зывает окружающим клеткам свои условия су­ществования. Под влиянием паракринных ко­манд, которые исходят из самой опухолевой клет­ки, окружающие клетки начинают вырабатывать стимуляторы пролиферации, и опухолевая клет­ка переходит на внутреннюю систему аутокрин-ного и паракринного управления.

Клональное развитие опухолевого процес­са. В настоящее время является общепризнан­ным наличие двух вариантов развития опухо­лей - моноклонального и поликлонального. Боль­шинство известных опухолей развивается из одной опухолевой клетки (например, аденома и рак толстой кишки, миелолейкоз, Т- и В-кле-точные лимфомы), возникшей вследствие ее со­матической мутации, и характеризуются моно-клональным происхождением, определенным маркером (например, «филадельфийская» хро­мосома), в начале своего развития растут из од­ного узла (уницентрический рост). Опухоли по­ликлонального происхождения характеризуют­ся ростом из нескольких клеток (мультицентри-ческий рост) и образованием нескольких зачат­ков опухолей (рак молочной и предстательной желез, рак печени). В соответствии с теорией



Глава 12 / ПАТОФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА



опухолевого поля (Willis) первоначально в тка­ни возникает несколько опухолевых зачатков, но по мере роста опухолевые узлы сливаются, формируя один узел, включающий несколько клонов опухолевых клеток. Следовательно, мо-ноклональное и поликлональное развитие опу­холи не исключают друг друга, при этом моно-клональный рост опухоли может переходить в поликлональный, а поликлональный (в резуль­тате элиминации низкоустойчивых и обычно менее злокачественных клонов) - в моноклональ-ный.

Прогрессия новообразования. Для каждой популяции неопластических клеток характерна определенная степень стабильности свойств, а именно: ростовые потребности и характер рас­пространения, соотношение разных типов кле­ток в ткани опухоли, характер образуемых клет­ками структур, которые могут сохраняться нео­пластическими клетками во многих генераци­ях. Однако эта стабильность не абсолютна, и время от времени популяция может изменять свои свойства, причем многократно. Изменение свойств неопластической популяции называют прогрессией. По Л. Фулдсу, прогрессия есть необратимое качественное изменение одного или нескольких свойств неоплазии, направлен­ное в сторону увеличения хотя бы некоторых различий между нормальной и неопластичес­кой тканью и характеризующееся рядом об­щих правил:

1. Независимая прогрессия множественных
опухолей: прогрессия разных опухолей, возник­
ших у одного и того же животного, идет незави­
симо друг от друга.

2. Независимая прогрессия признаков: про­
грессия разных свойств одной и той же опухоли
идет независимо.

3. Прогрессия не зависит от роста: прогрес­
сии могут подвергнуться не только растущие
опухоли, но и опухоли, рост которых остановил­
ся. Важным следствием правила 3 является то,
что стадия прогрессии, на которой находится
выявляемая у человека данная опухоль, не за­
висит от ее величины или длительности клини­
ческого течения.

4. Прогрессия может быть скачкообразной или
постепенной.

5. Прогрессия может идти несколькими аль­
тернативными путями.

6. Прогрессия не всегда доходит до конца


раньше, чем наступает смерть организма, в ко­тором развивается опухоль.

В целом правила Л. Фулдса констатируют лишь одно: отсутствие всяких правил в прогрес­сии, невозможность предсказать время или ха­рактер изменений, которые наступят в данной неоплазии [Васильев Ю.М. и соавт., 1981]. По­этому эволюция каждого новообразования сугу­бо индивидуальна и предсказать судьбу отдель­ного новообразования нельзя. Так называемое независимое формирование и присоединение опухолевых признаков исследователи объясня­ют неодномоментным включением комплемен­тарных онкогенов. В практической онкологии неблагоприятные условия, создаваемые лечебны­ми воздействиями (химио-, лучевая терапия), могут приводить к селекции клеток и появле­нию более устойчивого злокачественного клона.

12.3.6. Раковая кахексия

Термин «кахексия» (от греч. kakos - плохой и hexis - состояние) обозначает состояние обще­го истощения организма и встречается при раз­личных заболеваниях. У онкологических боль­ных кахексия характеризуется анорексией, от­вращением к пище, снижением массы тела, ане­мией, мышечной слабостью, при этом наблюда­ется интенсивный распад жиров и белков в орга­низме, в результате чего наступает смерть. Мно­гие биологически активные вещества способны влиять на развитие кахексии при онкологичес­кой патологии. Эти вещества можно условно разделить на 2 группы: 1) соединения, проявля­ющие гормоноподобные свойства и способству­ющие активации процессов катаболизма прак­тически во всех тканях организма; 2) продукты, образующиеся в результате катаболизма тканей, способные косвенно влиять на обмен веществ. К представителям второй группы относятся цито-кины, неконтролируемое выделение которых может быть одной из причин изменения обмена веществ в организме, обеспечивающего опухо­левый рост. Высказываются предположения о том, что TNF-a, интерлейкин-6 (ИЛ-6) и у-ин-терферон (у-ИФ), повышенная экспрессия кото­рых часто определяется при кахексии, могут выступать в качестве медиаторов этого процес­са, способствуя развитию интоксикации, анорек-сии, снижению массы тела. При кахексии пере­численные цитокины определяются в повышен-




Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


опухолевого поля (Willis) первоначально в тка­ни возникает несколько опухолевых зачатков, но по мере роста опухолевые узлы сливаются, формируя один узел, включающий несколько клонов опухолевых клеток. Следовательно, мо-ноклональное и поликлональное развитие опу­холи не исключают друг друга, при этом моно-клональный рост опухоли может переходить в поликлональный, а поликлональный (в. резуль­тате элиминации низкоустойчивых и обычно менее злокачественных клонов) - в моноклональ-ный.

Прогрессия новообразования. Для каждой популяции неопластических клеток характерна определенная степень стабильности свойств, а именно: ростовые потребности и характер рас­пространения, соотношение разных типов кле­ток в ткани опухоли, характер образуемых клет­ками структур, которые могут сохраняться нео­пластическими клетками во многих генераци­ях. Однако эта стабильность не абсолютна, и время от времени популяция может изменять свои свойства, причем многократно. Изменение свойств неопластической популяции называют прогрессией. По Л. Фулдсу, прогрессия есть необратимое качественное изменение одного или нескольких свойств неоплазии, направлен­ное в сторону увеличения хотя бы некоторых различий между нормальной и неопластичес­кой тканью и характеризующееся рядом об­щих правил:

1. Независимая прогрессия множественных
опухолей: прогрессия разных опухолей, возник­
ших у одного и того же животного, идет незави­
симо друг от друга.

2. Независимая прогрессия признаков: про­
грессия разных свойств одной и той же опухоли
идет независимо.

3. Прогрессия не зависит от роста: прогрес­
сии могут подвергнуться не только растущие
опухоли, но и опухоли, рост которых остановил­
ся. Важным следствием правила 3 является то,
что стадия прогрессии, на которой находится
выявляемая у человека данная опухоль, не за­
висит от ее величины или длительности клини­
ческого течения.

4. Прогрессия может быть скачкообразной или
постепенной.

5. Прогрессия может идти несколькими аль­
тернативными путями.

6. Прогрессия не всегда доходит до конца


раньше, чем наступает смерть организма, в ко­тором развивается опухоль.

В целом правила Л. Фулдса констатируют лишь одно: отсутствие всяких правил в прогрес­сии, невозможность предсказать время или ха­рактер изменений, которые наступят в данной неоплазии [Васильев Ю.М. и соавт., 1981]. По­этому эволюция каждого новообразования сугу­бо индивидуальна и предсказать судьбу отдель­ного новообразования нельзя. Так называемое независимое формирование и присоединение опухолевых признаков исследователи объясня­ют неодномоментным включением комплемен­тарных онкогенов. В практической онкологии неблагоприятные условия, создаваемые лечебны­ми воздействиями (химио-, лучевая терапия), могут приводить к селекции клеток и появле­нию более устойчивого злокачественного клона.

12.3.6. Раковая кахексия

Термин «кахексия» (от греч. kakos - плохой и hexis - состояние) обозначает состояние обще­го истощения организма и встречается при раз­личных заболеваниях. У онкологических боль­ных кахексия характеризуется анорексией, от­вращением к пище, снижением массы тела, ане­мией, мышечной слабостью, при этом наблюда­ется интенсивный распад жиров и белков в орга­низме, в результате чего наступает смерть. Мно­гие биологически активные вещества способны влиять на развитие кахексии при онкологичес­кой патологии. Эти вещества можно условно разделить на 2 группы: 1) соединения, проявля­ющие гормоноподобные свойства и способству­ющие активации процессов катаболизма прак­тически во всех тканях организма; 2) продукты, образующиеся в результате катаболизма тканей, способные косвенно влиять на обмен веществ. К представителям второй группы относятся цито-кины, неконтролируемое выделение которых может быть одной из причин изменения обмена веществ в организме, обеспечивающего опухо­левый рост. Высказываются предположения о том, что TNF-a, интерлейкин-6 (ИЛ-6) и у-ин-терферон (у-ИФ), повышенная экспрессия кото­рых часто определяется при кахексии, могут выступать в качестве медиаторов этого процес­са, способствуя развитию интоксикации, анорек-сии, снижению массы тела. При кахексии пере­численные цитокины определяются в повышен-




Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


ном количестве не только в опухоли, но и в цир­кулирующих жидкостях, а при снижении их содержания возможно обратное развитие кахек­сии.

Мобилизация жиров с помощью цитокинов происходит посредством ингибирования актив­ности фермента липопротеинлипазы. При подав­лении активности фермента содержание жирных кислот становится недостаточным для нормаль­ной функции адипоцитов, что приводит к акти­вации процессов катаболизма в жировой ткани.

Некоторые исследователи предполагают, что в развитии кахексии, вызванной онкологичес­кой патологией, определенную роль играет фак­тор мобилизации липидов, который осуществ­ляет прямой гидролиз триглицеридов в жиро­вой ткани до глицерина и неэстерифицирован-ных жирных кислот. Введение сыворотки кро­ви мышей с лимфомой здоровым особям вызы­вало массивную иммобилизацию жиров. "У жи­вотных группы сравнения, получавших адрена­лин, повышение мобилизации жиров из жиро­вых депо было незначительным или отсутство­вало совсем. Фактор мобилизации липидов при­сутствовал и в опухолевой ткани, и в культуре клеток лимфомы. Дальнейшие исследования показали, что это стабильный протеин с молеку­лярной массой (м.м.) около 5 кД, состоящий из двух субъединиц с высокой и низкой молеку­лярной массой. Он термостабилен, не реагирует на воздействие липазы, разрушается трипсином с образованием низкомолекулярной субъедини­цы, резистентной к воздействию протеолитичес-ких ферментов. Позже фактор мобилизации ли­пидов был назван токсогормоном L. Его опреде­лили в асцитической жидкости больных гепато-мой и у мышей с саркомой-180. Соединение с аналогичными характеристиками присутствова­ло в сыворотке крови больных с клиническими проявлениями онкологической кахексии и от­сутствовало у здоровых пациентов. Оно также не было обнаружено у больных со значительным снижением массы тела при болезни Альцгейме-ра. Содержание фактора мобилизации липидов в сыворотке крови больных злокачественными опухолями коррелировало со снижением массы тела, а при эффективном лечении уровень опре­деляемого фактора снижался.

Выявлен ингибитор выработки фактора мо­билизации липидов опухолью - эйкозапентаено-вая кислота, относящаяся к полиненасыщенным


жирным кислотам. Эксперименты in vitro пока­зали снижение экспрессии опухолью исследуе­мого фактора, a in vivo - ингибирование разви­тия кахексии. Эйкозапентаеновая кислота спо­собна ингибировать липолиз в адипоцитах пу­тем снижения накопления цАМФ в ответ на дей­ствие фактора мобилизации липидов.

Несмотря на большое число исследований по изучению механизмов развития кахексии при раке, медиатор этого состояния до настоящего времени не выявлен. На первый взгляд кахек­сия представляется невыгодным состоянием для опухоли, так как смерть организма ведет и к умиранию опухоли. Однако рост новообразова­ния сильно зависит от экзогенного поступления липидов и аминокислот, поэтому выработка опу­холью факторов, способствующих процессам ка­таболизма тканей, необходима для повышения метаболизма в ней самой. В этом случае ингиби­торы кахексии при раке с помощью отграниче­ния опухоли от главного энергетического мате­риала, вероятно, могут вызвать снижение опу­холевого роста. Все полученные результаты и высказанные исследователями предположения, возможно, помогут разработать новые подходы к лечению опухолей.

12.3.7. Опухолевые маркеры

Начало изучения опухолевых маркеров было весьма обнадеживающим. Уже в конце прошло­го века в моче больных множественной миело-мой были обнаружены специфические белки (им­муноглобулины), получившие название «белки Бенса-Джонса», однако следующего успеха при­шлось ждать более 80 лет. Он связан с открыти­ем Г.И.Абелевым и Ю.С.Татариновым а-фетоп-ротеина в крови больных гепатомой. Эти иссле­дования положили начало новому этапу в изу­чении факторов, ассоциированных с ростом зло­качественных опухолей, и привели к открытию в XX столетии серии различных соединений, получивших название «опухолевые маркеры». Маркеры широко используются клиническими биохимиками для выявления первичной опухо­ли и ее метастазов. К маркерам злокачественно­го роста относят вещества различной природы. В их число входит более 200 соединений: анти­гены, гормоны, ферменты, гликопротеины, ли-пиды, белки, метаболиты, концентрация кото­рых коррелирует с массой опухоли, ее пролифе-ративной активностью, а в некоторых случаях -



Глава 12 / ПАТОФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА



со степенью злокачественности новообразования. Аномальная экспрессия генома - один из основ­ных механизмов продукции маркеров опухоле­выми клетками, который обусловливает синтез эмбриональных, плацентарных и эктопических белков, ферментов, антигенов и гормонов.

В качестве «идеальных тестов» для ранней диагностики злокачественных опухолей предла­галось множество маркеров, однако эта пробле­ма до настоящего времени остается нерешенной. Сложности обусловлены многообразием требова­ний, предъявляемых к «идеальному маркеру». Идеальный опухолевый маркер должен проду­цироваться опухолевой клеткой в достаточных количествах, чтобы его можно было определить с помощью современных методов. Он не должен присутствовать у здоровых людей и при добро­качественных опухолях, но должен выявляться на ранних стадиях опухолевого процесса еще до клинических проявлений опухоли. Количество опухолевого маркера должно быть прямо про­порционально объему опухоли, а его уровень должен коррелировать с результатами противо­опухолевого лечения.

В клинических исследованиях используется ряд достаточно эффективных «опухолевых мар­керов», которые, однако, не всегда соответству­ют всем вышеуказанным критериям в полной мере. Современные биохимические и иммуноло­гические методы позволяют выявить новообра­зования, когда число опухолевых клеток дости­гает 109-1010, а минимальный уровень секрети-руемого опухолью маркера - от одного до несколь­ких фемтомолей в 1,0 мл сыворотки крови. Боль­шая эффективность использования опухолевых маркеров в клинике может быть достигнута пу­тем комбинации разных тестов. Следует отме­тить, что количество предлагаемых маркеров для диагностики и мониторинга злокачественных новообразований постоянно увеличивается и на­ступает этап критической их переоценки с це­лью формирования стратегии и адекватного ис­пользования. Большинство опухолевых марке­ров в достаточной степени изучено (табл. 55, 56). Из числа недавних успехов клинической биохи­мии следует отметить разработку и внедрение в практическую онкологию маркеров костного ре-моделирования (пиридинолина - Пид, дезокси-пиридинолина - Дпид), поскольку кости скелета относятся к одной из наиболее распространен­ных локализаций метастазирования злокаче-


ственных опухолей. Биохимические методы ди­агностики метастазов в кости необходимы для правильного планирования лечебных меропри­ятий, определения стадии основного заболева­ния и оценки прогноза.

12.3.8. Инвазия и метастазирование опухолей

Главной проблемой в лечении злокачествен­ных опухолей остается метастазирование, зак­лючающееся в том, что раковые клетки мигри­руют по лимфатической и кровеносной системе, а также по межтканевым щелям, имплантиру­ются и дают начало новым опухолям в различ­ных органах и тканях. Однако, как правило, когда удается обнаружить первичную опухоль, часть клеток уже покинула ее и осела в других органах как «семена» вторичного рака. Около 30% пациентов со злокачественными опухоля­ми имеют клинически выявляемые метастазы в период установления диагноза. У остальных 30-40% метастазы имеются в скрытом виде и про­являются в дальнейшем.

Формирование метастатических очагов явля­ется продолжительным процессом, который на­чинается на ранней стадии развития первичной опухоли и усиливается во времени. Опухолевые клетки из метастатических очагов сами облада­ют способностью метастазировать; часто суще­ствование крупного и клинически идентифици­руемого метастаза осложняется наличием боль­шого количества микрометастазов, образованных из клеток первичной опухоли или из клеток другого метастаза. Различия возраста и разме­ров метастазов, их рассеянное расположение по всему организму и гетерогенная структура пре­пятствуют полному хирургическому их удале­нию и ограничивают эффективность многих си­стемных противоопухолевых препаратов.

Инвазия и метастазирование - главные про­явления прогрессии злокачественной опухоли. И эти процессы взаимосвязаны. Полагают, что метастазы являются отдаленным последствием инвазии. В настоящее время во многих лабора­ториях проводится широкий спектр работ, по­священных изучению молекулярных основ этих явлений. Уже известны некоторые основные процессы, которые тесно связаны с механизма­ми инвазии и метастазирования опухолевых клеток: адгезия и межклеточные взаимодей-




Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


Маркеры злокачественного роста


Таблица 55


Маркеры Вид опухоли
ОНКОФЕТАЛЬНЫЕ И ПЛАЦЕНТАРНЫЕ БЕЛКИ
Альфа-фетопротеин Гепатоцеллюлярный рак. Тератокарциномы с элементами желточного мешка.
  Эмбриональные опухоли яичка. Опухоли желудка, поджелудочной железы,
  желчных путей, толстой кишки, почки
Трофобластический Трофобластические опухоли
бета1-гликопротеин  
Плацентарный белок 5 (РР-5) Опухоли молочной железы, яичники
Плацентарные белки Рак молочной железы
(РР-10, РР-11, РР-1)  
Ассоциированный с беремен- Опухоли репродуктивных органов
ностью белок плазмы А(РАРР-А)  
Белковый фактор фертильности Опухоли репродуктивных органов
Он ко модул и н Опухоли мочевого пузыря, шейки матки, прямой кишки, гортани, печени, легких,
  кожи, языка
Ассоциированный с беремен- Рак молочной железы, эндометрия легкого, гортани, при мелономе
ностью альфа2-гликопротеин  
Альфа2-макроглобулин Хориокарцинома, меланома
Раково-эмбриональный антиген Рак толстой кишки, желудка, поджелудочной и молочной желез
Тканевый полипептидный антиген Рак молочной железы
Хорионический гонадотропин Трофобластические опухоли. Несеминомные опухоли яичка
Панкреатический онкофетальный Опухоли поджелудочной железы
антиген  
АНТИГЕНЫ И ГЛИКОЛИПИДЫ
СА-12-5 Рак яичников
СА-19-9 Рак поджелудочной железы и толстой кишки
СА-15-3 Рак молочной железы
Опухолево-ассоциированный Рак шейки матки
антиген ТА-4  
Простатический специфический Рак предстательной железы
антиген  
Общие липидносвязанные сиало- Меланома - ганглиозиды GD2 Ь Gd3. Лимфома Беркитта - церамидтригексозид.
вые кислоты и гликосфинголипиды Симпатобластома - анггмозид GD2. Рак печени - СМ2; рак гортани, яичников,
  желудка, опухоли костей
БЕЛКИ ОСТРОЙ ФАЗЫ
Церулоплазмин Лимфогранулематоз
Гаптоглобин Рак гениталий и молочной железы. Рак легкого и желудочно-кишечного тракта
Альфа2-глобулины Лимфогранулематоз
С-реактивный белок Заболевание крови
Альфа-кислый гликопротеид Рак печени,желудка
Бета2-микроглобулин Миелома
ГОРМОНЫ И БИОЛОГИЧЕСКИ АКТИВНЫЕ СОЕДИНЕНИЯ
Эритропоэтин Опухоли почки
Кортизол Кортикостерома
Альдостерон Альдостерома
Кальцитонин, АКТГ, МСГ Тимома
5-гидрокситриптамин, гистамин, Карциноиды (желудочно-кишечный тракт, поджелудочная железа)
АКТГ, МСГ, кальцитонин, ПТГ, ВИП,  
лей- и метионинэнкефалины,  
р-эндорфин, гастрин  
Полиамины (спермидин,спермин, Рак желудка, пищевода, печени, желчного : пузыря, острые лейкозы,
путресцин) нефробластома, злокачественные лимфопролиферативные заболевания

Глава 12 / ПАТОФИЗИОЛОГИЯ ТКАНЕВОГО РОСТА



Продолжение табл. 55

Рецепторы гормонов, полипеп- Гормонозависимые опухоли
тидных факторов роста,  
простагландинов  
Эйкозаноиды (простагландины Остеогенная саркома. Рак молочной железы
серии Е, простагландин F2a,  
тромбоксан, простациклин)  
ФЕРМЕНТЫ И ИЗОФЕРМЕНТЫ
Лактатдегидрогеназа Рак яичка, молочной железы, яичников, злокачественные
лимфопролиферативные заболевания
Диаминооксидаза Рак щитовидной железы, желудка, яичников, прямой кишки
Гексокиназа Рак желудка
Нейронспецифическая енолаза Нейробластома. Мелкоклеточный рак легкого
Креатинкиназа и ее изоферменты Опухоли желудочно-кишечного тракта
Щелочная фосфатаза и ее Первичные и метастатические опухоли печени.
изоферменты Семиномы яичка
Плацентарная щелочная фосфатаза Рак яичников, легкого
Гамма-глутамилтрансфераза Первичный и метастатический рак печени
(в комплексе со ЩФ и ЛДГ)  
Лейцининаминопептидаза Опухоли печени, рак поджелудочной железы
Галактозилтрансфераза и Рак яичка, яичников, молочной железы, желудка
сиалилтрансфераза  
Кислая фосфатаза и ее Опухоли предстательной железы
изоферменты  
Альфа-амилаза и ее изоферменты Рак поджелудочной железы, мелкоклеточный рак легкого

ствия, протеолитическая активность и подвиж­ность опухолевых клеток, а также неоангиоге-нез. Не следует забывать и об иммунной систе­ме, так как, по данным некоторых авторов, бла­годаря толерантности иммунной системы к био­логически активным веществам, синтезируемым иммунокомпетентными клетками у онкологичес­ких больных, некоторые клоны раковых клеток способны выживать и давать начало новым, вто­ричным опухолям.

Процесс метастазирования является каскадом связанных между собой последовательных эта­пов, включающих многочисленные взаимодей­ствия опухоль - хозяин. Чтобы образовать мета­статическую опухоль, клетка или группа кле­ток должна быть способна покинуть первичную опухоль, внедриться в ткани в другом месте, наконец, выжить и пролиферировать. Для осу­ществления этого сложного процесса необходи­мы проникновение клеток в микроциркулятор-ное русло, остановка их в отдаленном кровенос­ном сосуде, выход из сосуда в интерстиций и паренхиму органа с последующей пролифераци­ей и образование вторичной колонии. Только наиболее приспособленные клетки могут выжить на каждом из этих этапов. Лишь небольшая часть (<0,01%) циркулирующих опухолевых клеток


способна в конечном итоге успешно образовать метастатическую колонию. Таким образом, ме-тастазирование является высокоселективной конкуренцией, которая способствует выживанию небольшой субпопуляции метастатических опу­холевых клеток, существовавших в первичной опухоли.

Локализация метастазов широко варьирует в зависимости от гистологического варианта и рас­положения первичной опухоли. Во многих слу­чаях при злокачественных новообразованиях наиболее часто поражается метастазами орган, оказавшийся первым на пути циркулирующих клеток по капиллярному руслу. В качестве при­мера можно привести саркомы, метастазирую-щие в легкие, метастазирование рака легкого в мозг и диссеминацию рака толстой кишки в пе­чень. С другой стороны, имеются разные типы локализации метастазов в органах и тканях, происхождение которых не может быть объяс­нено только на основании анатомического их расположения. Так, светлоклеточная карцино­ма почек часто метастазирует в щитовидную железу, рак молочной железы - в яичники, а меланома - в печень. Также широко известно сродство клеток рака молочной и предстатель­ной желез к костной системе, куда они чаще всего




Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ





Дата публикования: 2015-01-23; Прочитано: 6301 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.02 с)...