Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

МАТЕРИАЛЫ 4 страница



4. Реакционную смесь охлаждают.

5. Если в исследуемой ДНК имеется искомый ген, то праймеры создают фрагменты двухцепочечной ДНК, связываясь с комплементарными участками «своего» гена.

6. Затем в реакционную смесь добавляют нуклеотиды и ДНК-полимеразу.

7. Если в реакционной смеси наличествуют двухцепочечные фрагменты ДНК, то нуклеотиды при-соединяются к 3’-концам праймеров, полностью достраивая соответствующий ген на всем его протяжении. А так как синтез начинался на каждой нити ДНК отдельно, то в результате получается две молекулы двухцепочечного ДНК. Другими словами, количество ДНК увеличивается в два раза.

8. Повторение циклов (от 30 до 80 раз) приводит к накоплению (амплификации) искомого гена.

9. На завершающем этапе определяют количество ДНК в реакционной смеси с помощью электрофореза. При положительной реакции оно резко возрастает, в случае отрицательного результата – не из-меняется. Полимеразная цепная реакция – сложная процедура, требующая квалифицированного персонала, комплекса оборудования и специальных расходных материалов. Для проведения реакции оборудуется специальное помещение, которое часто так и называется: лаборатория ПЦР.

Метод молекулярной гибридизации Этот метод используется для выявления степени сходства различных ДНК (при идентификации мик-роорганизмов проводят сравнение ДНК выделенного штамма с ДНК эталонного штамма).

А. Исследуемую ДНК нагревают в щелочной среде для расплетения ее на две отдельные нити.

Б. Одну из них закрепляют на специальном фильтре.

В. Этот фильтр помещают в раствор, содержащий радиоактивный зонд (одноцепочечную молекулу ДНК эталонного штамма, меченную радиоактивным изотопом).

Г. Затем температуру реакционной смеси понижают, чтобы создать условия для восстановления двухцепочечной структуры ДНК.

Д. В случае, если исследуемая ДНК и ДНК эталонного штамма относятся к одному виду – в реакцион-ной смеси формируется двухцепочечная ДНК. При отрицательной реакции двухцепочечная ДНК не формируется (для оценки реакции используется биохимическая методика). На практике все связи двух цепочек полностью не восстанавливаются из-за высокого уровня генетической изменчивости микро-организмов, поэтому реакцию оценивают по степени гомологии – проценту восстановленных связей между двумя цепочками ДНК.

Этот метод основан на способности ферментов рестрикции специфически расщеплять ДНК в определённых сайтах.

Рис. 7. Схема рестрикционного анализа

Если происходит изменение в сайте узнавания (мутация, рекомбинация, метилирование ДНК и т.д.) рестриктаза теряет способность выполнять свою функцию. Основная идея заключается в следующем: различные последовательности ДНК приводят к расщеплению ДНК ферментами рестрикции в разных местах. Полученные с помощью рестриктаз фрагменты ДНК служат маркерами различных процессов, происходящих внутри клетки исследуемого организма.

17. Специфические биологические особенности и морфология вирусов. Структура и химический состав вирусов и бактериофагов.

Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным способом размножения в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.Форма вирионов может быть раз­личной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиели­та, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом.

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителя­ми инфекционных заболеваний человека,

Кроме обычных вирусов, известны и так называемые нека­нонические вирусы — прионы — белковые инфекционные ча­стицы, являю-щиеся агентами белковой природы, имеющие вид фибрилл. Прионы, являются одновременно индукторами и продуктами автономно­го гена человека или животного и вызывают у них энцефалопа­тии в условиях медленной вирусной инфекции

Другими необычными агентами, близкими к вирусам, явля­ются вироиды — небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие забо­левания у растений.

Морфология вирусов. Размеры вирусов.

Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пуле-видные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму (рис. 2-1). При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр — ДНК-содержащие, а тогавирусы, пикорнавирусы — РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный — более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, — своеобразные маркёры вирусной ДНК.

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными — от 2 сегментов у ареновирусов до 11 — у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) — +РНК.

Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания («шапочки») для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием.

Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов.

Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними.

Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры — пепломеры.

В состав суперкапсидной оболочки входят липиды (до 20—35%) и углеводы (до 7—8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом.

Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц).

Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией.

Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей.

Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других — разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие — более сферическими.

Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида.

Реовирусы, в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц.

Вирусы, обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой.

Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11—13 субъединиц.

У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.

Структура бактериофагов

Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встре­чаются и лучше изучены бактериофаги, имеющие форму сперматозои­да или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спи­рально скрученная пить ДНК, по­крытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окру­женный сократительным чехлом. Базальная пластинка и нити осу­ществляют процесс адсорбции бактериофага на бактериальной клетке (рис. 9). Существуют бакте-риофаш. имеющие другое строе­ние: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

18. Принципы классификации и теории происхождения вирусов.

Вирусы составляют самостоятельное царство Vira, которое отличается от животных и растений тем, что в составе вириона находится только одна из двух нуклеиновых кислот (ДНК или РНК), отсутствуют клеточные структуры и автономный обмен веществ и вирусы имеют репродуктивный способ размножения, возможный только в живой клетке.

Международный комитет по таксономии вирусов (МКТВ) на III Международном конгрессе вирусологов (Мадрид, 1975) произвел группирование вирусов в роды и семейства на основании морфологии вириона, химического состава вирусов, характера репродукции их. Основные признаки, на которых базируется классификация вирусов:

1) характеристика нуклеиновой кислоты; тип (ДНК,РНК), число нитей в ней (одно- или двунитчатая), процентное содержание ее в вирионе, молекулярная масса, содержание гуанина и цитозина;

2) морфология вириона, тип симметрии, наличие внешних липопротеидных. оболочек, форма и размер вириона;

3) биофизические свойства вирусов и их химический состав (белки, липиды);

4) особенности репликации вирусов. Большое значение также придают устойчивости вируса к физическим и химическим факторам, кругу поражаемых хозяев и антигенным свойствам вирусов. Как «вид» предложено рассматривать набор вирусов, имеющих сходные характеристики. Род — группа видов с определенными общими свойствами, а семейство — группа родов, имеющих общие свойства.

Все изученные в настоящее время вирусы сгруппированы в 14 семейств, помимо которых существует группа неклассифицированных вирусов, например вирус гепатита А (возбудитель инфекционного гепатита) и вирус гепатита В (возбудитель сывороточного гепатита).

Происхождение вирусов.

Существует три теории происхождения вирусов. Согласно первой вирусы - результат дегенерации одноклеточных организмов. В эволюции дегенерация - отнюдь не редкий процесс, но эта теория не объясняет разнообразие вирусов.

Теория доклеточных организмов, перешедших к паразитизму, и теория дериваты клеточных структур, ставших автономными (гипотеза «взбесившихся генов») - две наиболее популярные теории происхождения вирусов. В пользу теории доклеточного паразитизма говорит существование хвостатых фагов, а в пользу клеточных структур, обретших самостоятельность - R-плазмоиды. Кроме того, гипотеза «взбесившихся генов» объясняет общность дефектных вирусов, сателлитов, плазмидов и прионов. Если она верна- возникновение вирусов не было единичным событием и продолжается постоянно. Тогда должны возникать новые вирусы - абсолютно новые, а не развившиеся из ранее существовавших.

Между вирусами возможен обмен целыми блоками генетической информации, причем эти вирусы могут быть генетически весьма далеки друг от друга. Новые функции у вирусов могут возникать при неожиданном сочетании собственных генов и интеграции генов чужих. Увеличение генотипа вируса за счет неработающих генов может привести к образованию новых генов. Все эти механизмы делают вирусы одними из самых быстроизменяющихся организмов на земле.

Вирусы могут менять «хозяев», на которых они паразитировали веками. Считается, что именно так произошел вирус СПИДа - «переквалифицировавшись» с обезьян на людей, и грипп «испанка», бывший ранее одним из птичьих вирусов.

19. Стадии репродукции вирусов. Типы взаимодействия вируса с клеткой

Фундаментальное отличие вирусов от других инфекционных агентов состоит в механизмах их репродукции: вирусы не способны к самостоятельному размножению. Репликация генетического материала вирусов (ДНК или РНК), а также экспрессия вирусных генов (вирусный ген -» вирусный белок) осуществляются при помощи механизмов репликации, транскрипции, сплайсинга и трансляции инфицированной клетки-хозяина. Циклы репродукции вирусов в инфицированной клетке зависят от типа вирусной нуклеиновой кислоты.

Репродукция +РНК-вирусов

Рис. 5-1. Репродуктивный цикл +РНК-содержащих вирусов. После адсорбции вирус проникает в клетку путём виропексиса (1). Вирусная +РНК высвобождается в цитоплазме (2). Поскольку молекулярная симметрия вирусной +РНК аналогична мРНК, то +РНК может непосредственно распознаваться и транслироваться рибосомами (3). Образуется гигантская полипротеиновая молекула. Клеточные протеазы «нарезают» образующийся вирусный полипротеин (4) с образованием РНК-зависимой РНК-полимеразы, вирусной протеазы, ингибиторов синтеза клеточных РНК и различных структурных белков. РНК-полимераза катализирует образование -РНК на матрице родительской +РНК (5). Затем уже на матрице -РНК происходит многократный синтез молекул +РНК (6), участвующих в синтезе вирусных белков (7) либо входящих в состав генома дочерних популяций вирусов (8).

+РНК-вирусы (например, пикорна- и тогавирусы) проникают в чувствительную клетку путём виропексиса. Репродуктивный цикл начинается после высвобождения вирусного генома в цитоплазме

Пикорнавирусы размножаются подобно большинству +РНК-содержащих вирусов. Среди них наиболее хорошо изучен полиовирус (возбудитель полиомиелита), имеющий небольшие размеры, голый капсид и однонитевую молекулу +РНК. Адсорбционные возможности полиовиру-са ограничены клетками приматов и человека, имеющих специфические рецепторы. Репликация +РНК полностью происходит в цитоплазме клетки. Репродуктивный цикл подразделяют на раннюю и позднюю стадии.

Ранняя стадия репродукции включает процессы, происходящие после проникновения вируса в клетку до образования большого количества копий +РНК в процессе репликации. Поздняя стадия репродукции включает синтез белков капсида. Образованные в репликативном синтезе молекулы +РНК функционируют как мРНК, транслируясь в один гигантский полипептид, нарезаемый протеазами на капсидные белки. После самосборки капсидов формируется зрелая дочерняя популяция. Поскольку пикорнавирусы лишены суперкапсида, то высвобождение популяции сопровождается массивным повреждением клеточной мембраны с последующим лизисом инфицированной клетки.

Известны следующие типы взаимодействий «вирус-клетка»: продуктивный (образуется дочерняя популяция), интегративный (вирогения), абортивный (дочерняя популяция не образуется) и интерференция вирусов (инфицирование чувствительной клетки разными вирусами).

Продуктивное взаимодействие «вирус-клетка» чаще носит литический характер, то есть заканчивается гибелью и лизисом инфицированной клетки, что происходит после полной сборки дочерней популяции. Гибель клетки вызывают следующие факторы: раннее подавление синтеза клеточных белков, накопление токсических и повреждающих клетку вирусных компонентов, повреждение лизосом и высвобождение их ферментов в цитоплазму.

Интегративное взаимодействие, или вирогения, не приводит к гибели клетки. Нуклеиновая кислота вируса встраивается в геном клетки-хозяина и в последующем функционирует как его составная часть. Наиболее яркие примеры подобного взаимодействия — лизогения бактерий и вирусная трансформация клеток.

Абортивное взаимодействие не приводит к появлению дочерней популяции и происходит при взаимодействии вируса с покоящейся клеткой (стадия клеточного цикла G0) либо при инфицировании клетки вирусом с изменёнными (дефектными) свойствами. Следует различать дефектные вирусы и дефектные вирионы. Первые существуют как самостоятельные виды и функционально неполноценны, так как для их репликации необходим «вирус-помощник» (например, для репликации аденоассоциированного вируса необходимо присутствие аденовирусов). Вторые составляют дефектную группу, формирующуюся при образовании больших дочерних популяций (например, могут образовываться пустые капсиды либо безоболочечные нуклео-капсиды). Особая форма дефектных вирионов — псевдовирионы, включившие в капсид нуклеиновую кислоту клетки-хозяина.

Интерференция вирусов происходит при инфицировании клетки двумя вирусами. Различают гомологичную (при инфицировании клетки родственными вирусами) и гетерологичную (если интерферируют неродственные виды) интерференцию. Это явление возникает не при всякой комбинации возбудителей, иногда два разных вируса могут репродуцироваться одновременно (например, вирусы кори и полиомиелита). Интерференция реализуется либо за счёт индукции одним вирусом клеточных ингибиторов (например, ИФН), подавляющих репродукцию другого, либо за счёт повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго.

20. Бактериофаги. Особенности взаимодействия фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги. Лизогения.

Бактериофаги (фаги) — этовирусы, поражающие бактериальные клетки (в качестве клетки-хозяина). Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и более или менее выраженного отростка. Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток — спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии нук-леокапсида.

Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги. Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и похож на процесс взаимодействия вирусов человека и животных с клеткой хозяина. Однако у фагов, имеющих хвостовой отросток с сокращающимся чехлом, он имеет особенности. Эти фаги адсорбируются на поверхности бактер иальной клетки с помощью фибрилл хвостового отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержащаяся в головке, проходит через полость хвостового стержня и активно впрыскивается в цитоплазму клетки. Остальные структурные элементы фага (капсид и отросток) остаются вне клетки.

После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стенки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30 40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии.

Взаимодействие фагов с бактериальной клеткой характеризуется определенной степенью специфичности. По специфичности действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий.

По характеру взаимодействия фага с клеткой все бактериофаги делятся:

• на вирулентные (литические), вызывающие продуктивную инфекцию и лизис бактериальной клетки;

• умеренные, вызывающие латентную инфекцию и ассоциацию генома вируса с бактериальной хромосомой. Умеренные фаги, в отличие от вирулентности, не вызывают гибели бактериальных клеток и при взаимодействии с ней переходят в неинфекционную форму фага, называемую профагом.Профаг — геном фага, ассоциированный с бактериальной хромосомой.Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геномом бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке в неограниченном числе поколений. Бактериальные клетки, содержащие в своей хромосоме профаг, называются лизогенными. Профаг в лизогенных бактериях самопроизвольно или под влиянием различных индуцированных агентов может переходить в вегетативный фаг. В результате такого превращения бактериальная клетка лизируется и продуцирует новые фаговые частицы. В ходе лизогенизации бактериальные клетки могут дополнительно приобретать новые признаки, детерминируемые геномом вируса. Такое явление — изменение свойств микроорганизмов под влиянием профага — называется фаговой, илилизогенной, конверсией (проявление вирус-инду-цироанной трансформации).

Умеренные фаги, неспособные ни при каких условиях переходить из профага в вегетативный фаг (образовывать зрелые фаговые частицы), называются дефектными, чаще это происходит в результате нарушения стадии сборки вирусных частиц. Некоторые умеренные фаги называются трансдуцирующими,поскольку с их помощью осуществляется один из механизмов генетической рекомбинации у бактерий - трансдукции. Такие фаги могут использоваться, в частности, в генной инженерии в качестве векторов для получения рекомбинантных ДНК и/или приготовлении рекомбинантных (генно-инженерных) вакцин.

Умеренные фаги проникают в бактериальную клетку и, не нарушая процессов синтеза в клетке, включаются в хромосому бактерии-хозяина. ДНК умеренного фага, включенная в ДНК бактерий, называется профагом. Умеренный фаг в виде профага может длительное время существовать в бактериях и размножаться вместе с ними. Культуры бактерий, сохраняющие в хромосоме умеренный фаг, называют лизогенными. Лизогенные бактерии способны передавать фаг по наследству бесконечно долго. Однако это равновесие нарушается при действии на лизогенные бактерии ультрафиолетовых лучей, радиации, некоторых антибиотиков, аскорбиновой кислоты. В этом случае профаги переходят из хромосомы бактерий в цитоплазму и превращаются в вирулентные. Нарушая синтез макромолекул в самой клетке, они размножаются и лизируют бактерии. Освобождаясь из клетки, они могут вновь заражать другие бактерии. Во время выхода профага из хромосомы бактериальной клетки в цитоплазму он может захватить с собой какие-либо гены бактериальной хромосомы, лежащие рядом с ним. После лизиса клетки-хозяина фаг уносит эти гены и может передать их при заражении другой бактериальной клетке. Так, бактериофаг может унести из коринебактерии дифтерии гены, ответственные за продукцию токсинов, и передать их культурам этих бактерий, не обладающих способностью продуцировать токсин. Все процессы, связанные с заражением бактериальной культуры умеренным фагом, называют лизогенией.





Дата публикования: 2015-01-24; Прочитано: 237 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...