Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Предмет и задачи инженерной геодезии



Геодезия - наука, изучающая форму и размеры Земли, геодезические приборы, способы измерений и изображений земной поверхности на планах, картах, профилях и цифровых моделях местности. В современной геодезии находят применение новейшие измерительные средства, используют последние достижения в физике, механике, электронике, оптике, вычислительной технике. По разнообразию решаемых народнохозяйственных задач геодезия подразделяется на ряд самостоятельных дисциплин, каждая из которых имеет свой предмет изучения:

- высшая геодезия (гравимметрия, космическая геодезия, астрономическая геодезия) изучает форму и размеры Земли, занимается высокоточными измерениями с целью определения координат отдельных точек земной поверхности в единой государственной системе координат;

- топография и гидрография развивают методы съемки участков земной поверхности и изображения их на плоскости в виде карт, планов и профилей;

- фотограмметрия занимается обработкой фото-, аэрофото- и космических снимков для составления карт и планов;

- картография рассматривает методы составления и издания карт;

- маркшейдерия - область геодезии, обслуживающая горнодобывающую промышленность и строительство тоннелей;

- инженерная (прикладная) геодезия изучает методы геодезических работ, выполняемых при изысканиях, проектировании, строительстве и эксплуатации различных зданий и сооружений, а также рациональном использовании и охране природных ресурсов.

Задачами инженерной геодезии являются:

1) топографо-геодезические изыскания различных участков, площадок и трасс с целью составления планов и профилей;

2) инженерно-геодезическое проектирование - преобразование рельефа местности для инженерных целей, подготовка геодезических данных для строительных работ;

3) вынос проекта в натуру, детальная разбивка осей зданий и сооружений;

4) выверка конструкций и технологического оборудования в плане и по высоте, исполнительные съемки;

5) наблюдения за деформациями зданий и сооружений.

При топографо-геодезических изысканиях выполняют:

а) измерение углов и расстояний на местности с помощью геодезических приборов (теодолитов, нивелиров, лент, рулеток и др.);

б) вычислительную (камеральную) обработку результатов полевых измерений на ЭВМ;

в) графические построения планов, профилей, цифровых моделей местности (ЦММ).

2 Понятие о форме и размерах земли. При решении ряда геодезических задач требуется знать форму и размеры Земли, которая не является правильным геометрическим телом. Ее физическая поверхность (и в особенности поверхность суши) очень сложная, ее невозможно выразить какой-либо математической формулой. Поэтому в геодезии введено понятие уровенной поверхности. Уровенной называют выпуклую поверхность, касательная к которой в любой точке перпендикулярна направлению отвесной линии. Следовательно, уровенную поверхность мысленно можно провести через любую точку на физической поверхности земли, под землей и над землей. Реально уровенную поверхность можно представить как водную поверхность пруда, озера, моря, океана в спокойном состоянии. Поверхность Мирового океана, мысленно продолженная под сушей, названа поверхностью геоида, а тело, ограниченное ею, – геоидом. Но и поверхность геоида из-за неравномерного размещения масс в теле Земли также очень сложная и не выражается какой-либо математической поверхностью, например поверхностью шара. Исследования формы Земли астрономо-геодезическими методами показали, что Земля сплюснута у полюсов (вследствие вращения Земли вокруг своей оси). Поэтому в качестве математической поверхности, характеризующей форму Земли, принимают поверхность такого эллипсоида вращения, т.е. тела, получающегося от вращения эллипса вокруг его малой (полярной) оси, который по форме наиболее близко подходит к поверхности геоида. Размерами эллипсоида являются длины его большой а и малой b полуосей, а также сжатие, которое определяют по формуле: а = (а – b)/а. На протяжении двух последних столетий ученые неоднократно определяли размеры земного эллипсоида. При приближенных расчетах поверхность эллипсоида принимают за поверхность шара (равновеликого по объему земному эллипсоиду) с радиусом 6371,1 км, округляя это значение до 6370 км, а в некоторых случаях до 6400 км. Для небольших участков земной поверхности поверхность эллипсоида принимают за плоскость. 3 метод проекции в геодезии
Чтобы изобразить объемный предмет на плоском чертеже, применяют метод проекций. К простейшим проекциям относятся центральная и ортогональная проекции.

При центральной проекции (рис.1.5-а) проектирование выполняют линиями, исходящими из одной точки, которая называется центром проекции. Пусть требуется получить центральную проекцию четырехугольника ABCD на плоскость проекции P; центр проекции - точка S.

Проведем линии проектирования до пересечения с плоскостью проекции, получим точки a, b, c, d, являющиеся проекциями точек A, B, C, D. Плоскость проекции и объект могут располагаться по разные стороны от центра проекции; так при фотографировании центром проекции является оптический центр объектива, а плоскостью проекции - фотопластинка или фотопленка.

Рис.1.5-а


^ 1.4.2. Ортогональная проекция


При ортогональной проекции линии проектирования перпендикулярны плоскости проекции. Проведем через точки A, B, C, D линии, перпендикулярные плоскости проекции P; в пересечении их с плоскостью P получим ортогональные проекции a, b, c, d соответствующих точек (рис.1.5-б)


Рис.1.5-б 4 системы координат

Положение любой точки P в пространстве (в частности, на плоскости) может быть определено при помощи той или иной системы координат. Числа, определяющие положение точки, называются координатами этой точки.

Наиболее употребительные координатные системы - декартовы прямоугольные.

Кроме прямоугольных систем координат существуют косоугольные системы. Т.к. я не встречал примеров применения косоугольных систем, то я их не рассматриваю. Прямоугольные и косоугольные координатные системы объединяются под названием декартовых систем координат.

Иногда на плоскости применяют полярные системы координат, а в пространстве - цилиндрические или сферические системы координат.

Обобщением всех перечисленных систем координат являются криволинейные системы координат.

Декартовы прямоугольные системы координат

Для задания декартовой прямоугольной системы координат нужно выбрать несколько взаимноперпендикулярных прямых, называемых осями. Точка пересечения осей O называется началом координат.

На каждой оси нужно задать положительное направление и выбрать единицу масштаба. Координаты точки P считаются положительными или отрицательными в зависимости от того, на какую полуось попадает проекция точки P.

Рис. 2: Декартова плоскость  

Декартовыми прямоугольными координатами точки P на плоскости называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.

Когда говорят про двухмерную систему коодинат, горизонтальную ось называют осью абсцисс (осью Ox), вертикальную ось - осьюординат (осью Оy). Положительные направления выбирают на оси Ox - вправо, на оси Oy - вверх. Координаты x и y называются соответственно абсциссой и ординатой точки.

Запись P(a,b) означает, что точка P на плоскости имеет абсциссу a и ординату b.

Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или, что то же, проекции радиус-вектора r точки P на три взаимно перпендикулярные координатные оси.

В зависимости от взаимного расположения положительных направлений координатных осей возможны левая и правая координатные системы.

Рис. 3а: Левые координатные системы   Рис. 3б: Правые координатные системы  

Как правило, пользуются правой координатной системой. Положительные направления выбирают: на оси Ox - на наблюдателя; на оси Oy - вправо; на оси Oz - вверх. Координаты x, y, z называются соответственно абсциссой, ординатой и аппликатой.

Координатными поверхностями, для которых одна из координат остается постоянной, здесь являются плоскости, параллельные координатным плоскостям, а координатными линиями, вдоль которых меняется только одна координата, - прямые, параллельные координатным осям. Координатные поверхности пересекаются по координатным линиям.

Запись P(a,b,c) означает, что точка Q имеет абсциссу a, ординату b и аппликату c.


Полярные системы координат

Рис. 4: Полярные системы координат  

Полярными координатами точки P называются радиус-вектор ρ - расстояние от точки P до заданной точки O (полюса) и полярный угол φ - угол между прямой OP и заданной прямой, проходящей через полюс (полярной осью). Полярный угол считается положительным при отсчете от полярной оси против часовой стрелки и отрицательным при отсчете в обратную сторону.

Координатные линии в полярных системах - окружности с центром в полюсе и лучи.

Формулы для перехода от полярных координат к декартовым

x=ρ*cos(φ), y=ρ*sin(φ)

и обратно:

ρ=sqrt(x2)+y2), φ=arctg(y/x)=arcsin(y/ρ)


Цилиндрические системы координат

Рис. 5: Цилиндрические системы координат  

ρ и φ - полярные координаты проекции точки P на основную плоскость (обычно xOy), z - аппликата - расстояние от точки P до основной плоскости.

Для цилиндрических координат координатными поверхностями являются плоскости, перпендикулярные к оси Oz (z=const), полуплоскости, ограниченные осью z (φ=const) и цилиндрические поверхности, осью которых является ось z (ρ=const). Координатные линии - линии пересечения этих поверхностей.

Формулы для перехода от цилиндрических координат к декартовым

x=ρ*cos(φ), y=ρ*sin(φ), z=z

и обратно:

ρ=sqrt(x2+y2), φ=arctg(y/x)=arcsin(y/ρ)


Сферические системы координат

Рис. 6: Сферические системы координат  

r - длина радиус-вектора, φ - долгота, θ - полярное расстояние. Положительные направления отсчета показаны на рисунке 6. Если давать сферическим координатам значения в следующих пределах:

0 ≤ r < ∞, -π < φ ≤ π, 0 ≤ θ ≤ π,

то получаются однозначно все точки пространства.

Координатные поверхности: сферы с центром в начале (r=const), полуплоскости, ограниченные осью z (φ=const), конусы (с вершиной в начале), для которых ось z является осью (θ=const). Координатные линии - линии пересечения этих поверхностей.

Формулы перехода от сферических координат к декартовым

x=r*sin(θ)*cos(φ), y=r*sin(θ)*sin(φ), z=r*cos(φ)

и обратно

r=sqrt(x2+y2+z2), φ=arctg(y/x), φ=arctg(sqrt((x2+y2)/z))

5 6 системы координат и высот

В зависимости от параметров, используемых для привязки точек, существуют:

плоские и пространственные; линейные, угловые и комбинированные системы координат.

Основные виды плоских координатных систем приведены на рис. 5.

Положение точки С в створной координатной системе определяется положением

точки С на линии АВ и расстоянием a от точки А до точки С.

Рис. 5. Плоские координатные системы

Положение точки С в перпендикулярной системе координат определяется

расстоянием a и длиной перпендикуляра b.

Положение точки С в полярной системе координат определяется полярным углом

α и радиусом-вектором r.

При использовании линейной засечки положение точки C определяется

расстояниями засечек a и b.

Положение точки А в плоской прямоугольной системе координат определяется

длинами перпендикуляров XA, YA, опущенными с

точки А на координатные оси X и Y.

Положение точки С в системе координат

угловой засечки определяется углами засечек α A

и α B.

Для определения пространственного

положения точек на земной поверхности в

геодезии в основном применяются угловая

географическая пространственная система

координат, рис.6, и система координат Гаусса-

Крюгера, рис.7.

Положение точки А в географической

системе координат, рис. 6, определяется широтой

ϕ, угол между отвесной линией в точке А и

плоскостью экватора и долготой λ - двухгранный угол между плоскостями начального

меридиана и меридиана, проходящего через заданную точку.

Наиболее распространенной в практической геодезии является плоская

прямоугольная система координат Гаусса-Крюгера, которая объединяет в себе

глобальность (общеземной характер) и простоту, свойственную плоским прямоугольным

системам координат. Земной шар разделен на 6 o (3o) зоны, рис.7, каждая зона

разворачивается в плоскость.

Координаты точки А определяются номером зоны и прямоугольными

координатами этой точки в системе координат зоны. За ось Х принимается центральный

(осевой) меридиан зоны, ось Y - проекция экватора.

Для предотвращения отрицательных значений координат Y осевой меридиан

перенесен в западном направлении на 500км.

В геодезии используются две основные группы систем высот: абсолютная и

относительная.

Отметки точек в абсолютной системе высот в Украине определяются относительно среднего уровня Балтийского моря, закрепленного на специальной рейке (футштоке) в Кронштадте, рис. 8. Относительная система высот определяется в каждом конкретном случае индивидуально. Например, в строительстве, рис. 9, за нулевую отметку принимается отметка пола первого этажа или верха фундамента, и все отметки определяются относительно принятой точки строительного нуля.





Дата публикования: 2015-01-24; Прочитано: 810 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...