Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Разновидности сетей



Одноранговые сети представляют собой сети, в которых все компьютеры, с точки зрения хранящейся на них информации, совершенно одинаковы и все пользователи работают в одной рабочей группе.

РАБОЧАЯ ГРУППА - это множество пользователей, компьютеры которых благодаря программному обеспечению составляют замкнутую группу, к ресурсам которой доступ может быть только через специальный программный шлюз.

При работе в сети компьютер, на котором работает пользователь, называют КЛИЕНТ, а другой компьютер, ресурсами которого пользуются СЕРВЕР.

При работе в сети, когда используются только диски и принтера сервера он называется ФАЙЛ-СЕРВЕР,

Таким образом, одноранговая сеть это простейший случай локальной сети, которая практически не требует администрирования (или администрирование может производиться самими пользователями) и наиболее проста с точки зрения, как используемого оборудования, так и с точки зрения сетевого программного обеспечения. Примерами сетевой операционной системы, на которой может быть построена одноранговая локальная сеть, являются Windows-3.11 и WÍndows-95.

Многоранговые сети - это более сложный, но более правильный способ организации аяытой сети в случае относительно большой организации, в которой эта сеть используется, поскольку:

a) позволяет создание множества рабочих групп и взаимодействие между ними;

b) благодаря разбиению на отдельные рабочие группы как с точки зрения логической организации сети, так и с аппаратной уменьшает нагрузку на отдельные участки сети, что позволяет повысить пропускную способность сети в целом.

В многоранговых сетях, как правило, используются т.н. выделенные сервера, на которых и хранится вся информация, к которым обращаются рабочие станции (или клипы).

Первоначально при создании локальных сетей использовались пакеты прикладных

программ, которые и позволяли обращение к другим компьютерам сети как к серверам

файлов.

15. Электрическая цепь и ее элементы (линейные, нелинейные, управляемые). Приемники и источники электрической энергии, и их схемы замещения.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЕ ЭЛЕМЕНТЫ

§ 1.1. Классификация электрических цепей и их элементов

Электрической цепью называют совокупность устройств и объектов, предназначенных для распределения, взаимного преобразования и передачи электрической и других видов энергии и (или) информации. Свое назначение цепь выполняет при наличии в ней электрического тока. Электромагнитные процессы в цепи и ее параметры могут быть описаны с помощью из-вестных из курса физики интегральных понятий: ток, напряжение (разность потенциалов), заряд, магнитный поток, электродвижущая сила, сопротивление, индуктивность, взаимная индуктивность и емкость.

В отличие от электрической цепи электромагнитные процессы в ряде электротехнических устройств характеризуются дифференциальными понятиями: вектор напряженности элек-трического поля и вектор электрического смещения, вектор напряженности магнитного поля и вектор магнитной индукции, плотность заряда и вектор плотности тока, удельная электрическая проводимость и др. Анализ устройств, процессы в которых описываются с помощью дифференциальных понятий, рассматривают в теории электромагнитного поля.

Следует отметить, что именно в теории поля дается определение интегральных понятий (таких, как ток и напряжение), характеризующих электрическую цепь. Расчет параметров цепи (сопротивлений, индуктивностей, емкостей) в общем случае также возможен только с помощью понятий, используемых в теории поля.

В некоторых случаях одно и то же устройство можно анализировать и методами теории цепей, и методами теории поля. Например, линия передачи электрической энергии может рассматриваться как цепь с распределенными параметрами или как направляющая система для электромагнитного поля. Выбор того или иного метода зависит от конкретных целей анализа, необходимой точности и других факторов.

Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Источники энергии (сигналов), такие, как электромеханические или электронные генераторы, аккумуляторы, гальванические элементы, термодатчики и т. д., предназначены для преобразования различных видов энергии в электрическую энергию.

Приемники энергии (сигналов) служат для преобразования электрической энергии в другие виды энергии. К ним относятся электрические двигатели, нагревательные приборы, электрические лампы, электронно-лучевые трубки, динамические громкоговорители и др.

Кроме основных элементов, цепь содержит различные вспомогательные элементы, которые связывают источники с приемниками (соединительные провода, линии передачи), подавляют или усиливают определенные составляющие сигналов (фильтры, усилители), изменяют уровень напряжения и тока в других частях цепи (трансформаторы), улучшают или изменяют характеристики и параметры участков цепи и ее элементов (корректирующие устройства, фазовые звенья) и т. п.

По назначению различают цепи для передачи и преобразования электрической энергии (цепи, применяемые в электроэнергетике) и цепи для передачи и преобразования информации (цепи в технике связи, радиотехнические цепи, цепи устройств автоматики и телемеханики и т. д.).

Цепи можно классифицировать по типу элементов, из которых они состоят, например, резистивные цепи — цепи, состоящие из резисторов и источников энергии, электронные цепи — цепи, содержащие электронные лампы и транзисторы, и т. д.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов, вы-водов), с помощью которых он соединяется с другими элементами.'

Различают двухполюсные и многополюсные (трехполюсные, четырехполюсные и т. д.) элементы цепи. Двухполюсные элементы имеют два зажима; к ним относятся источники энергии (за исключением многофазных и управляемых источников), резисторы, конденсаторы, индуктивные катушки.

Наиболее распространенные трехполюсные элементы — это электронные лампы (вакуумные триоды) и транзисторы (полупроводниковые триоды). 4 Примерами четырехполюсных элементов могут служить трансформаторы (двухобмоточные), индуктивные катушки с подмагничиванием (дроссели с подмагничиванием), интегральные операционные усилители.

Элементы цепи, имеющие более четырех зажимов, также находят применение (например, многообмоточные трансформаторы, различные микромодули — твердотельные компоненты электронных схем, многоэлектродные электронные лампы). Различают активные и пассивные элементы цепи. К активным элементам относятся источники энергии. Часто активными элементами называют также электронные лампы, транзисторы, операционные усилители, которые способны усиливать электрические сигналы. К пассивным относят элементы, в которых рассеивается и (или) накапливается энергия (резисторы, индуктивные катушки, конденсаторы, трансформаторы).

Реальные элементы цепи могут быть описаны алгебраическими или дифференциальными уравнениями, связывающими напряжения и токи на зажимах этих элементов. Такое описание может быть сделано с определенной степенью точности при идеализации физических процессов в элементах; второстепенные с определенной точки зрения процессы при этом не учитываются.

Если элемент цепи характеризуется линейными алгебраическими или дифференциальными уравнениями (при упомянутой ранее идеализации), то его называют линейным. Коэффициенты, связывающие напряжения и токи и их производные, представляют собой параметры элемента. Параметры линейного элемента могут быть постоянными (стационарный элемент) или могут изменяться в зависимости от времени по какому-либо закону (нестационарный, параметрический элемент).

Если элемент цепи описывается нелинейными алгебраическими или дифференциальными уравнениями, то он называется нелинейным. Нелинейные элементы могут быть также параметрическими.

Во многих случаях параметры элемента рассматриваются как сосредоточенные (элемент с сосредоточенными параметрами); при этом напряжения и токи на зажимах элемента не являются функциями пространственных координат, определяющих геометрические размеры элемента. Параметры элемента могут быть также распределенными (элемент с распределенными параметрами); такой элемент характеризуется уравнениями, в которых напряжения и токи зависят от пространственных координат. В качестве примеров элементов с распределенными параметрами можно назвать линии передачи энергии и информации, многослойные пленочные резистивноемкостные микроструктуры.

Элементы электрической цепи могут удовлетворять или не удовлетворять принципу взаимности. Упрощенно принцип взаимности состоит в следующем: реакция цепи на участке 1 от возмущения на участке 2 равна реакции на участке 2 от такого же возмущения на участке 1. Математическая формулировка этого принципа и его иллюстрации даны ниже. В соответствии с этим различают взаимные и невзаимные элементы. Примеры взаимных элементов — резисторы, индуктивные катушки, конденсаторы, трансформаторы; к невзаимным элементам относятся электронные лампы, транзисторы и др.

Цепи, содержащие только линейные элементы, называют линейными цепями. Основное

свойство таких цепей — применимость принципа наложения, заключающегося в том, что результирующая реакция линейной цепи на несколько приложенных одновременно возмущений равна сумме реакций, обусловленных каждым возмущением в отдельности.

Если цепь содержит один или несколько параметрических элементов, то ее называют параметрической (нестационарной).

Аналогично, если цепь содержит один или более нелинейных элементов, то ее называют нелинейной. Для нелинейной цепи в общем случае неприменим принцип наложения.

Цепь, содержащую элементы с сосредоточенными параметрами, называют цепью с сосредоточенны ми параметрами. Цепь, содержащую элементы с распределенными параметрами, называют цепью с распределенными параметрами.

Строго говоря, любая электрическая цепь представляет собой цепь с распределенными параметрами, зависящими от режима цепи, т.е, является нелинейной. Однако во многих случаях из-за большой скорости электромагнитных процессов изменения напряжений и токов, происшедшие на одном участке цепи, одновременно вызывают определенные изменения и на всех остальных участках цепи; зависимость параметров цепи от ее режима часто несущественна. Таким образом, во многих случаях реальные электрические цепи можно рассматривать как линейные цепи с сосредоточенными параметрами.

Цепи, содержащие только взаимные элементы, называют взаимными (цепи, состоящие из резисторов, конденсаторов, индуктивных катушек, трансформаторов и источников энергии). Если в цепи имеются невзаимные элементы, то цепь называют невзаимной (цепи с электронными лампами, транзисторами, операционными усилителями).

Можно говорить также об активных и пассивных цепях. Цепь считают активной, если по отношению к некоторым зажимам она является источником энергии. Такая цепь содержит активные элементы. В противном случае цепь называют пассивной.

16. Мероприятия по снижению потребления реактивной мощности.

Источники реактивной мощности(средства компенсации):

· Синхронные генераторы

· ЛЭП

· Синхронные двигатели в режиме перевозбуждения

· Синхронные компенсаторы

· БСК

· Вентильные статические источники реактивной мощности

Основные потребители реактивной мощности на предприятии это асинхронные двигатели и трансформаторы.

Основные мероприятия, направленные к рационализации работы асинхронных двигателей:
1. Замена малозагруженных двигателей двигателями меньшей мощности или замена на двигатели той же мощности, но с улучшенными характеристиками.
При замене двигателя двигателем меньшей мощности часто потери активной мощности из-за более низкого номинального к. п. д. но­вого двигателя могут остаться неизменными или же увеличиться (рис.1), а потребление реактивной мощности в ряде случаев умень­шиться (рис.2). Поэтому следует проверить целесообразность замены двигателей. Кроме того, следует учесть стоимость монтажных работ при замене двигателя.

2. Понижение рабочего напряжения для двигателей, работающих с малыми коэффициентами загрузки, путем:
1) Переключения малозагруженных двигателей (при загрузке 35% и ниже) напряжением 127/220 и 220/380 В с треугольника на звезду с помощью специальных переключателей или постоянной перепайкой статорных обмоток. Для двигателей с часто изменяющейся нагрузкой применяются автоматические переключатели с треугольника на звезду и обратно.
2) Секционирование статорных обмоток двигателей, загруженных до 50% номинальной мощности (рис. 3). Это мероприятие на практике осложняется необходимостью изготовления переключателей и перемотки обмотки с устройством до 18 выводов для их перепайки или их присоединения к переключателю. Коэффициент мощности при этом повышается с 0,5 до 0,8.
3) Понижение напряжения фабрично-заводских силовых сетей путем переключения ответвлений понижающих цеховых трансформаторов для случая, когда все двигатели в цехе мало загружены и питаются от одного и того же трансформатора.

3. Ограничение времени работы двигателей на х. х., которое осуществляется на практике чаще всего с помощью автоматических ограничителей.

4. Повышение качества ремонта асинхрон­ных двигателей. Выпуск из ремонта двигате­лей с большой неравномерностью загрузки от­дельных фаз с увеличенным током х. х. или с отклонением от заводских обмоточных данных вызывает значительное повышение потребле­ния двигателями реактивной мощности из сети.
Рационализация работы трансформато­ров, заключающаяся в замене и перегруппи­ровке их, а также отключении трансформато­ров во время работы на холостом ходу.
Если при этом потребление реактивной мощности снижается, а потери активной мощ­ности увеличиваются или наоборот, то следует решить целесообразность замены и перегруппировки транс­форматоров.

17. Технические средства сбора, передачи и отображения информации.





Дата публикования: 2015-01-24; Прочитано: 648 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...