Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

А) Линейные операции над векторами. Скалярное произведение векторов



Линейными операциями называют операции сложения и вычитания векторов и умножения вектора на число.

Сложение векторов. Пусть и – два произвольных вектора. Возьмем произвольную точку О и построим вектор ; затем от точки А отложим вектор . Вектор , соединяющий начало первого слагаемого вектора с концом второго, называется суммой этих векторов и обозначается (рис. 1).

Рис. 1 Рис. 2 Рис. 3 Рис. 4 Рис.5 Рис. 6

Ту же сумму можно получить иным способом. Отложим от точки О векторы и . Построим на этих векторах как на сторонах параллелограмм ОАСВ. Вектор – диагональ параллелограмма – является суммой векторов и (рис. 2).

Понятие суммы можно обобщить на случай любого конечного числа слагаемых (рис. 3).

Вычитание векторов. Разностью векторов и называется такой вектор , который в сумме с вектором дает вектор : .

Если векторы и привести к общему началу, то разность представляет собой отрезок, соединяющий их концы и направленный от «вычитаемого» к «уменьшаемому» (рис. 4).

Таким образом, если на векторах и , отложенных из общей точки О, построить параллелограмм ОАСВ, то вектор , совпадающий с одной диагональю, равен сумме , а вектор , совпадающий с другой диагональю, – разности (рис. 5).

Умножение вектора на число. Произведением вектора на действительное число называется вектор (обозначают ), определяемый следующими условиями:

1) ,

2) при и при .

Очевидно, что при .

Построим, например, векторы и для заданного вектора (рис. 6).

Из определения следует: два вектора и коллинеарны тогда и только тогда, когда имеет место равенство :

(2.1)

Свойства линейных операций:

1) ;

2) ;

3) ; ;

4) ;

5) ;

6) ;

7) ; ;

Пусть дан вектор . Ортом вектора (обозначается ) называется вектор единичной длины, сонаправленный с вектором .

Очевидно, для любого вектора .

Скалярным произведением двух ненулевых векторов и называется число, равное произведению длин этих векторов на косинус угла между ними:

Пример: Задание. Вычислить скалярное произведение векторов и , если их длины соответственно равны 2 и 3, а угол между ними 60°.

Решение. Так как из условия , , а , то

Если хотя бы один из векторов или равен нулевому вектору, то .

Свойства скалярного произведения:

- симметричность.

. Обозначается и называется скалярный квадрат.

3° Если , то

4° Если и и , то . Верно и обратное утверждение.

Если векторы и заданы своими координатами: , , то их скалярное произведение вычисляется по формуле:

Скалярное произведение векторов, заданных своими координатами, равно сумме произведений соответствующих координат.

Пример: Задание. Найти скалярное произведение векторов и

Решение. Скалярное произведение





Дата публикования: 2015-01-24; Прочитано: 312 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...