Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вычисление тройного интеграла в декартовой системе координат



Пусть существует тройной интеграл

, (25)

где - некоторая функция, заданная в пространственной области интегрирования .

Рис.29
Величина интеграла (25) есть масса тела , если подынтегральную функцию рассматривать, как плотность распределения массы . Пусть область ограничена поверхностями снизу и сверху, и боковой цилиндрической поверхностью или совокупностью нескольких цилиндрических поверхностей (рис.29). Функции и заданы в области D, которая является проекцией области на плоскость Оху. Каждая прямая, выходящая из внутренней точки области D пересекает границу области в двух точках . Возьмем бесконечно малый элемент в D и вычислим массу стержня вырезанного из цилиндрической поверхностью, у которого направляющей является граница элемента , а образующая параллельна оси Oz.

Выделим на высоте из нашего стержня элемент длины . Объём его равен , а масса будет равна (плотность массы в элементе объёма можно считать постоянной ввиду его малости).

Чтобы найти массу всего стержня необходимо просуммировать все такие элементы, т.е. вычислить интеграл

.

Здесь х и у считаются постоянными, так как интегрирование происходит по z. Чтобы определить массу всего , надо просуммировать массы всех узких стержней, опирающихся на всевозможные площади ds, тогда получаем

,

.

Тогда

. (26)

Таким образом, чтобы вычислить тройной интеграл, интегрируют по z от точки входа до точки выхода, считая х и у постоянными, затем от полученного результата вычисляют двойной интеграл по проекции области на плоскость Оху. Это один из способов вычисления тройных интегралов.

В случае, когда область ограничена поверхностями , , цилиндрическими поверхностями вдоль оси , интеграл (25) вычисляется по формуле

.

Если же область задана функциями , , и цилиндрическими поверхностями вдоль оси , то соответственно получаем для (25):

.

Пример 13. Вычислить тройной интеграл , где – область, ограниченная поверхностями , , , .

Решение. Область (рис. 30) можно записать в виде

Рис.30
,

где . Сводя тройной интеграл к повторному интегралу, получим

.

9.4.2. Вычисление тройного интеграла в цилиндрической и сферической системах координат. Кроме декартовой системы координат для описания положения точки в пространстве используются и другие системы координат, которые называются криволинейными системами координат. Наиболее распространёнными являются цилиндрическая и сферическая системы координат. Положение точки в цилиндрической системе координат определяется полярными координатами проекции точки М на плоскость и расстоянием точки М до плоскости (рис.31). Числа называются цилиндрическими координатами точки . Цилиндрические координаты связаны с декартовыми следующими отношениями

Рис.31
В ряде случаев вычисление тройного интеграла в цилиндрической системе координат упрощается по сравнению с вычислением того же интеграла, но в декартовой системе координат. Пусть

,

где , - аппликаты точек входа и выхода из области. Применив формулы перехода, получим:

.

Двойной интеграл вычисляем его в полярной системе координат:

.

Это и есть формула для вычисления тройного интеграла в цилиндрической системе координат.

Другая распространённая система координат - сферическая. Положение точки в сферической системе координат определяется расстоянием от начала координат - , полярным углом проекции её на плоскость и углом между осью и радиус-вектором точки М, отсчитанным от положительного направления оси, т.е. (рис. 32).

Пределы изменения параметров в сферической системе координат следующие: , , . Связь между сферической системой координат и декартовой выражается следующим образом:

  Рис.46

Имеет место формула для вычисления тройного интеграла в сферической системе координат

,

,

так как ябобиан преобразования

.

Пример 14. Вычислить интеграл , если область ограничена поверхностями и .

Решение. Область V представляет собою конус (рис.33 а). Уравнение конической поверхности, ограничивающей область , можно записать в виде , а саму область представить следующим образом: , где – круг радиуса 1 с центром в начале координат. Поэтому данный тройной интеграл можно свести к последовательному вычислению трех определенных интегралов в прямоугольных координатах:

.

Рис.33

Однако удобнее перейти к цилиндрическим координатам : , , . Тогда прообраз круга есть прямоугольник , прообраз конической поверхности – плоская поверхность , а прообраз области , область (рис.33 б). Якобиан перехода к цилиндрическим координатам равен , подынтегральная функция в цилиндрических координатах равна . Сводя тройной интеграл по области к последовательному вычислению трех определенных интегралов, получим

.

Отметим, что расстановку пределов интегрирования в цилиндрических координатах можно произвести, рассматривая не область , а изменение цилиндрических координат в области . Наглядно видно, что в области переменная изменяется от 0 до , при каждом значении переменная изменяется от 0 до 1, а для каждой точки области переменная изменяется в области от 0 (значение в области ) до (значение на конической поверхности).

Формула Остроградского-Гаусса. Под замкнутой поверхностью будем понимать поверхность, являющуюся границей некоторой ограниченной пространственной области V. Можно показать, что всякая кусочно-гладкая замкнутая поверхность является ориентированной. При этом ориентация определяется единичным вектором нормали к поверхности. Направление от поверхности внутрь области это внутренняя нормаль, соответственно наружу области V - это внешняя нормаль.

Теорема 14. Если векторная функция , непрерывна вместе с частными производными , , в области V, то имеет место формула Остроградского-Гаусса

. (27)

Поверхностный интеграл берётся по внешней нормали

1 Докажем эту формулу в случае, когда область является простой относительно оси Oz. Представим , где , . Положительной ориентацией и являются их положительные стороны и с внешними нормалями (рис. 34).

Преобразуем тройной интеграл по от к двойному интегралу по проекции

Двойные интегралы выразим через поверхностные, учитывая ориентацию поверхности:

,

,

тогда

.

Цилиндрическая поверхность имеет образующие параллельные оси Oz, поэтому нормаль перпендикулярна образующей и , .

.

тогда

.

Аналогично, для областей простых относительно Оy и Оx получим формулы

,

.

Если область простая одновременно относительно всех координатных осей, то, складывая почленно последние три формулы, получаем (27). <

Формула Остроградского-Гаусса справедлива и для простой области. Пусть , где - простые области относительно какой-либо оси координат. Запишем для каждой формулу

и сложим полученные результаты. Тогда слева, в силу свойства адитивности тройного интеграла, получим интеграл по области . Далее, учитывая, что внешние нормали к внутренним частям границ области направлены в разные стороны, получаем, что сумма поверхностных интегралов по этим частям границ областей будет равна нулю. Следовательно, в правой части останутся только интегралы по тем частям границ , которые составляют в совокупность границу S области . В силу аддитивности поверхностного интеграла это будет интеграл по . Такое разбиение удобно проводить плоскостями параллельными осям координат.

Формула Остроградского-Гаусса справедлива, если функция непрерывна в , а , , непрерывны в V и тройной интеграл существует. А также, формула Остроградского-Гаусса справедлива и для многосвязной области, граница которой состоит из конечного числа кусочно-гладких поверхностей. В этом случае .

Пример 15. Пользуясь формулой Остроградского-Гаусса вычислить интеграл , где – внешняя сторона сферы .

Решение. По формуле Остроградского-Гаусса имеем

,

где – шар . Для вычисления интеграла перейдем к сферическим координатам , , , , . Якобиан перехода равен . Уравнение границы области имеет вид . Получаем

.





Дата публикования: 2015-01-23; Прочитано: 528 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...