Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Структура фрейма



Состоит из характеристик описываемой стереотипной ситуации и их значений (слотов и заполнителей слотов):

• (имя фрейма:

• (имя первого слота: значен6ие первого слота),

• (имя второго слота: значение второго слота),

• …..

• (имя n-го слота: значение n-го слота)).


Достоинства фреймовых моделей:

· обеспечение требований структурированности связанности за счет свойств наследования и вложенности;

· наглядность системы знаний;

· возможность отражения концептуальной основы организации памяти человека;

· использование присоединенных процедур для включения процедурных знаний обеспечивающих комплексирование фреймового формализма с математическими моделями системами проекции традиционными программным обеспечением и позволяющих строить гибридные модели;

· способность систематизировать большие объемы информации с удобством для дальнейшего использования.
Недостатки фреймовых систем.

· отсутствие универсальной процедуры управления выводом (механизм наследования не позволяет выстраивать «цепочки умозаключений»); (сценарии)

· при использовании присоединенных процедур затрудняется управление завершенностью и постоянством целостного образа;

· относительно высокая сложность фреймовых систем (снижение скорости работы механизма вывода увеличении трудоемкости внесения изменений в родовидовую иерархию).
Исходя из этого фреймы лучше всего использовать для описания стереотипных знаний, знаний, которые не могут поменяться с течением времени (например при описании математических законов, формул). Так же, возможно использовать фрейм для описания конкретных объектов. (объектно-ориентирование)

12. Нейронные сети: принципы построения и приминение.

Самообучающиеся интеллектуальные системы основаны на методах автоматической классификации ситуаций из реальной практики, или на методах обучения на примерах. Примеры реальных ситуаций составляют так называемую обучающую выборку, которая формируется в течение определенного исторического периода. Элементы обучающей выборки описываются множеством классификационных признаков.
Стратегия «обучения с учителем» предполагает задание специалистом для каждого примера значений признаков, показывающих его принадлежность к определенному классу ситуаций. При обучении «без учителя» система должна самостоятельно выделять классы ситуаций по степени близости значений классификационных признаков.
В процессе обучения проводится автоматическое построение обобщающих правил или функций, описывающих принадлежность ситуаций к классам, которыми система впоследствии будет пользоваться при интерпретации незнакомых ситуаций. Из обобщающих правил, в свою очередь, автоматически формируется база знаний, которая периодически корректируется по мере накопления информации об анализируемых ситуациях.
Построенные в соответствии с этими принципами самообучающиеся системы имеют следующие недостатки:
• относительно низкую адекватность баз знаний возникающим реальным проблемам из-за неполноты и/или зашумленности обучающей выборки;
• низкую степень объяснимости полученных результатов;
• поверхностное описание проблемной области и узкую направленность применения из-за ограничений в размерности признакового пространства.
Индуктивные системы позволяют обобщать примеры на основе принципа индукции «от частного к общему». Процедура обобщения сводится к классификации примеров по значимым признакам. Алгоритм классификации примеров включает следующие основные шаги.
1. Выбор классификационного признака из множества заданных.
2. Разбиение множества примеров на подмножества по значению выбранного признака.
3. Проверка принадлежности каждого подмножества примеров одному из классов.
4. Проверка окончания процесса классификации. Если какое-то подмножество примеров принадлежит одному подклассу, т.е. у всех примеров этого подмножества совпадает значение классификационного признака, то процесс классификации заканчивается.
5. Для подмножеств примеров с несовпадающими значениями классификационных признаков процесс распознавания продолжается, начиная с первого шага. При этом каждое подмножество примеров становится классифицируемым множеством.
Нейронные сети представляют собой классический пример технологии, основанной на примерах. Нейронные сети — обобщенное название группы математических алгоритмов, обладающих способностью обучаться на примерах, «узнавая» впоследствии черты встреченных образцов и ситуаций. Благодаря этой способности нейронные сети используются при решении задач обработки сигналов и изображений, распознавания образов, а также для прогнозирования [10].
Нейронная сеть — это кибернетическая модель нервной системы, которая представляет собой совокупность большого числа сравнительно простых элементов — нейронов, топология соединения которых зависит от типа сети. Чтобы создать нейронную сеть для решения какой-либо конкретной задачи, следует выбрать способ соединения нейронов друг с другом и подобрать значения параметров межнейронных соединений.
В системах, основанных на прецедентах, БЗ содержит описания конкретных ситуаций (прецеденты). Поиск решения осуществляется на основе аналогий и включает следующие этапы:
• получение информации о текущей проблеме;
• сопоставление полученной информации со значениями признаков прецедентов из базы знаний;
• выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме;
• адаптация выбранного прецедента к текущей проблеме;
• проверка корректности каждого полученного решения;
• занесение детальной информации о полученном решении в БЗ.
Системы, основанные на прецедентах (Case-based reasoning). В этих системах база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты. Тогда поиск решения проблемы сводится к поиску по аналогии (абдуктивному выводу от частного к частному):
Получение подробной информации о текущей проблеме; Сопоставление полученной информации со значениями признаков прецедентов из базы знаний; Выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме; В случае необходимости выполняется адаптация выбранного прецедента к текущей проблеме; Проверка корректности каждого полученного решения; Занесение детальной информации о полученном решении в базу знаний.
Так же как и для индуктивных систем прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. Но в отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Далее наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов.
Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи.
Информационные хранилища (Data Warehouse). В отличие от интеллектуальной базы данных информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного анализа данных (реализации OLAP - технологии). Извлечение знаний из баз данных осуществляется регулярно, например, ежедневно.
Типичными задачами оперативного ситуационного анализа являются:
Определение профиля потребителей конкретного товара; Предсказание изменений ситуации на рынке; Анализ зависимостей признаков ситуаций (корреляционный анализ) и др. Для извлечения значимой информации из баз данных используются специальные методы (Data Mining или Knowledge Discovery), основанные или на применении многомерных статистических таблиц, или индуктивных методов построения деревьев решений, или нейронных сетей. Формулирование запроса осуществляется в результате применения интеллектуального интерфейса, позволяющего в диалоге гибко определять значимые признаки анализа. Применение информационных хранилищ на практике все в большей степени демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем. Разработкой и распространением информационных хранилищ в настоящее время занимаются такие компьютерные фирмы, как IBM (Intelligent Miner), Silicon Graphics (MineSet), Intersolv (DataDirect, SmartData), Oracle (Express), SAS Institute (SAS/Assist) и др.

13. Экспертные системы. Понятие и назначение ЭС.

Экспертная система (ЭС) - это компьютерная программа, которая моделирует рассуждения человека-эксперта в некоторой определенной области и использует для этого базу знаний, содержащую факты и правила об этой области, специальную процедуру логического вывода.
Разработка систем, основанных на знаниях, является составной частью исследований по ИИ, и имеет целью создание компьютерных методов решения проблем, обычно требующих привлечения экспертов-специалистов.
Взаимодействие эксперта, пользователя и структурных частей системы можно представить в виде следующей базовой структуры.

Рис.1. Базовая структура экспертной системы

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;

технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;

высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;

объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.

По мнению ведущих специалистов, в недалекой перспективе ЭС найдут следующее применение:

ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;

технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.

Неформализованные задачи обычно обладают следующими особенностями:

ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;

ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;

большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;

динамически изменяющимися данными и знаниями.

Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

14. Основные свойства ЭС. Классы решаемых задач.

Экспертная система – это программное средство, использующее экспертные знания для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области. Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС. На рисунке 1.1 показаны основные свойства ЭС.

Рис. 1.1 – Основные свойства ЭС

Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

Пример 16.5 (все примеры далее из [7, 8, 10]):

Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы.

Пример 16.6:

Мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста.

Пример 16.7:

Проектирование. Проектирование состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов чертеж, пояснительная записка и т.д. Основные проблемы здесь - получение четкого структурного описания знаний об объекте и проблема "следа". Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

Пример 16.8:

Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров "подгоняются" под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

Пример 16.9:

Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

Пример 16.10:

Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом "ученике" и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Пример 16.11:





Дата публикования: 2015-01-24; Прочитано: 596 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...