Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

П. 2.1. Построение кубического сплайна



Пусть на задана непрерывная функция . Введем сетку

.

Обозначим .

Определение 2.1 Интерполяционным кубическим сплайном, соответствующим данной функции и данным узлам называется функция , удовлетворяющая следующим условиям:

1. на каждом сегменте функция является многочленом третьей степени;

2. функция , а также ее первая и вторая производные непрерывны на ;

3. – выполняется условие интерполирования.

На каждом из отрезков , будем строить функцию в виде многочлена третьей степени:

(2.1)

– коэффициенты, подлежащие определению. Поясним смысл введенных переменных. Имеем

поэтому

Из условия интерполирования , получаем

, (2.2)

доопределим .

Из непрерывности функции следует . Отсюда, учитывая выражение для , получаем

Обозначая (2.3)

перепишем это уравнение в следующем виде

(2.4)

Условия непрерывности первой производной приводят к уравнениям

(2.5)

Условия непрерывности второй производной приводят к уравнениям

(2.6)

Объединяя (2.4)-(2.6), получим систему уравнений относительно неизвестных , .

Два недостающих уравнения получают, задавая те или иные граничные условия для . Пусть функция удовлетворяет условиям , тогда естественно требовать, чтобы . Отсюда получаем , т.е.

Условие совпадает с уравнением (2.6) при , если положить . Таким образом, приходим к замкнутой системе уравнений для определения коэффициентов кубического сплайна:

(2.7)

(2.8)

(2.9)

Исключая из этих уравнений переменные , получим систему, содержащую только . Для этого рассмотрим два соседних уравнения вида (2.9):

Вычтем второе уравнение из первого, получаем

Подставим найденное выражение для в правую часть уравнения (2.8), получим .

Приведя подобные слагаемые, и умножив обе части уравнения на 2, получим

(2.10)

Рассмотрим два соседних уравнения вида (2.7) и умножим их на и соответственно

Подставим эти выражения в (2.10), получаем

.

Окончательно для определения коэффициентов получаем систему уравнений

(2.11)

Системы такого вида решаются методом прогонки. В силу диагонального преобладания система имеет единственное решение.

По найденным коэффициентам ci коэффициенты bi, di определяются с помощью явных формул

(2.12)





Дата публикования: 2015-01-23; Прочитано: 233 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...