Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ресурсы компьютерной системы. Классификация. Распределение и управление ресурсами. Проблемы взаимодействующих процессов



Операционная система не только предоставляет пользователям и программистам удобный интерфейс к аппаратным средствам компьютера, но и является механизмом, распределяющим ресурсы компьютера.

Вычислительными ресурсами называются возможности, обеспечиваемые компонентами вычислительной системы, расходуемые (занимаемые) в процессе её работы.

Типы вычислительных ресурсов:

· Процессорное время

· Память (оперативная и виртуальная)

· Место на жёстком диске (постоянная память)

· Пропускная способность сети.

Ресурсы распределяются между процессами. Процесс (задача) программа в стадии выполнения.

Программа - это статический объект, представляющий собой файл с кодами и данными.

Процесс - это динамический объект, который возникает в операционной системе после того, как пользователь или сама операционная система решает «запустить программу на выполнение», то есть создать новую единицу вычислительной работы. Управление ресурсами вычислительной системы с целью наиболее эффективного их использования является назначением операционной системы.

Ресурсы (от франц. ressource — вспомогательное средство)— объём работы или срок эксплуатации, на который рассчитывается машина, здание и т. п. После исчерпания ресурса безопасная работа устройства не гарантируется, ему требуется капитальный ремонт или замена. [1]

Ресурсы персонального компьютера

Ресурсом является любой компонент ЭВМ и предоставляемые им возможности: центральный процессор, оперативная или внешняя память, внешнее устройство, программа и т.д. Ресурсы подразделяются на четыре вида.

Виды ресурсов персонального компьютера:

Аппаратные ресурсы (Hardware), файловые ресурсы, программные ресурсы (Software), сетевые ресурсы

Аппаратные ресурсы – это системный блок, периферийные устройства, любое оборудование, подключенное к компьютеру.

Файловые ресурсы – это файлы и папки, а также вся файловая система.

Программные ресурсы – это все программы установленные в компьютере. Часто называют программным обеспечением (ПО). Программное обеспечение подразделяется на два вида: системное и прикладное ПО.

Сетевые ресурсы – ресурсы доступные по средствам ЛВС.[1] Как правило, это ресурсы других компьютеров доступные по локальной или глобальной сети.

Компьютерная сеть – аппаратное и программное объединение двух и более компьютеров с выделением сетевых ресурсов. Для связи компьютеров в компьютерную сеть могут быть использованы следующие аппаратные средства:

1. Модем

2. Сетевая карта

3. Сетевой кабель

4. Сетевые коммутаторы

5. WI-FI адаптер

6. Беспроводное оборудование

7. Маршрутизаторы

8. Сетевые экраны

9. и т.д.

Сетевыми ресурсами могут быть:

· Оборудование (т.е. аппаратные ресурсы другого ПК или сетевые устройства), например сетевой принтер.

· Информация (т.е. файлы и папки другого компьютера), например информация в Интернете, или на сервере.

· Программное обеспечение (установленное на другом компьютере).[2]

Главным элементом компьютера является микропроцессор - электронная схема, выполняющая все вычисления и обработку информации. Когда приходится выполнять много математических вычислений, к основному микропроцессору добавляют математический сопроцессор.

Микропроце́ссор — процессор (устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде), реализованный в виде одной микросхемы[1] или комплекта из нескольких специализированных микросхем[2] (в противоположность реализации процессора в виде электрической схемы на элементной базе общего назначения или в виде программной модели). Первые микропроцессоры появились в 1970-х и применялись в электронных калькуляторах, в них использовалась двоично-десятичная арифметика 4-х битных слов. Вскоре их стали встраивать и в другие устройства, например терминалы, принтеры и различную автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х создать первые бытовые микрокомпьютеры. Дополнительные сведения: История вычислительной техники

Долгое время центральные процессоры создавались из отдельных микросхем малой и средней интеграции, содержащих от нескольких единиц до нескольких сотен транзисторов. Разместив целый ЦПУ на одном чипе сверxбольшой интеграции удалось значительно снизить его стоимость. Несмотря на скромное начало, непрерывное увеличение сложности микропроцессоров привело к почти полному устареванию других форм компьютеров, в настоящее время один или несколько микропроцессоров используются в качестве вычислительного элемента во всём, от мельчайших встраиваемых систем и мобильных устройств до огромных мейнфреймов и суперкомпьютеров.

С начала 1970-х широко известно, что рост мощности микропроцессоров следует закону Мура, который утверждает что число транзисторов на интегральной микросхеме удваивается каждые 18 месяцев. В конце 1990-х главным препятствием для разработки новых микропроцессоров стало тепловыделение (TDP) из-за утечек тока и других факторов[3].

Некоторые авторы относят к микропроцессорам только устройства, реализованные строго на одной микросхеме. Такое определение расходится как с академическими источниками[4], так и с коммерческой практикой (например, варианты микропроцессоров Intel и AMD в корпусах типа SECC и подобных, такие как Pentium II — были реализованы на нескольких микросхемах).

В настоящее время, в связи с очень незначительным распространением микропроцессоров, не являющихся процессорами, в бытовой лексике термины «микропроцессор» и «процессор» практически равнозначны.[3]

Одной из важных задач операционной системы является управление имеющимися в ее распоряжении ресурсами (основной памятью, устройствами ввода-вывода, процессором), а также их распределение между разными активными процессами. При разработке стратегии распределения ресурсов необходимо принимать во внимание следующие факторы.

Равноправность. Обычно желательно, чтобы всем процессам, претендующим на какой-то определенный ресурс, предоставлялся к нему одинаковый доступ. В особенности это касается заданий, принадлежащих к одному и тому же классу, т.е. заданий с аналогичными требованиями к ресурсам.

Дифференциация отклика. С другой стороны, может понадобиться, чтобы операционная система по-разному относилась к заданиям различного класса, имеющим различные запросы. Нужно попытаться сделать так, чтобы операционная система выполняла распределение ресурсов в соответствии с целым набором требований. Операционная система должна действовать в зависимости от обстоятельств. Например, если какой-то процесс ожидает доступа к устройству ввода-вывода, операционная система может спланировать выполнение этого процесса так, чтобы как можно скорее освободить устройство для дальнейшего использования другими процессами.

Эффективность. Операционная система должна повышать пропускную способность системы, сводить к минимуму время ее отклика и, если она работает в системе разделения времени, обслуживать максимально возможное количество пользователей. Эти требования несколько противоречат друг другу; насущной проблемой исследования операционных систем является поиск нужного соотношения в каждой конкретной ситуации.

Задача управления ресурсами и их распределения типична для исследований операционных систем; здесь могут применяться математические результаты, полученные в этой области. Кроме того, важно измерять активность системы, что позволяет следить за ее производительностью и вносить коррективы в ее работу.

На рис. 2.11 показаны основные элементы операционной системы, участвующие в планировании процессов и распределении ресурсов в многозадачной среде. Операционная система поддерживает несколько очередей, каждая из которых является просто списком процессов, ожидающих своей очереди на использование какого-то ресурса. В краткосрочную очередь заносятся процессы, которые (или, по крайней мере, основные части которых) находятся в основной памяти и готовы к выполнению. Выбор очередного процесса осуществляется краткосрочным планировщиком, или диспетчером. Общая стратегия состоит в том, чтобы каждому находящемуся в очереди процессу давать доступ по очереди; такой метод называют циклическим (round-robin). Кроме того, процессам можно присваивать различный приоритет.


Передача управления процессу
Рис. 2.11. Ключевые элементы многозадачной операционной системы

В долгосрочной очереди находится список новых процессов, ожидающих возможности использовать процессор. Операционная система переносит их из долгосрочной очереди в краткосрочную. В этот момент процессу необходимо выделить определенную часть основной памяти. Таким образом, операционная система должна следить за тем, чтобы не перегрузить память или процессор, добавляя в систему слишком много процессов. К одному и тому же устройству ввода-вывода могут обращаться несколько процессов, поэтому для каждого устройства создается своя очередь. И здесь операционная система должна решать, какому процессу предоставить освободившееся устройство ввода-вывода в первую очередь.

Во время прерывания управление переходит к обработчику прерываний, который является частью операционной системы. В силу своей функциональности процесс может обратиться к некоторому сервису операционной системы, например к драйверу устройства ввода-вывода. При этом происходит вызов обработчика обращений к сервисам, который становится точкой входа в операционную систему. Независимо от того, произошло ли прерывание или обращение к сервису, после его обработки планировщик выберет из краткосрочной очереди процесс для выполнения.

Далее в этом разделе приводится чисто функциональное описание; эти модули в различных операционных системах имеют разные особенности и устройство.





Дата публикования: 2015-02-03; Прочитано: 29008 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...