Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Сексуальные девиации



Основная статья: Сексуальные девиации

Существуют отклонения от нормального полового поведения (сексуальные девиации). Содержание сексуальной нормы зависит от конкретных культурно-исторических условий.

Основные группы девиаций описываются в Международной классификации болезней (МКБ-10) в группе диагнозов F65 (Класс V — Психические расстройства и расстройства поведения, Расстройства личности и поведения в зрелом возрасте, Расстройства сексуального предпочтения). Девиации (парафилии) не являются вариантами сексуальной ориентации.

46. К чему приводит радиоактивное излучение. Ионизи́рующее излуче́ние — в самом общем смысле — поток микрочастиц, способных ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим[1][2][3][4][5], поскольку его энергии недостаточно для ионизации атомов и молекул в основном состоянии.

Наиболее значимы следующие типы ионизирующего излучения:[1][2][6][7]

Природные источники ионизирующего излучения:[8][6][7]

Искусственные источники ионизирующего излучения:

Наведённая радиоактивность[править | править исходный текст]

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причем тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

Цепочка ядерных превращений[править | править исходный текст]

В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.

Единицы измерения[править | править исходный текст]

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:

В Международной системе единиц СИ единицей поглощённой дозы является грэй (Гр, англ. gray, Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (англ. rad): доза, соответствующая поглощенной энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр.

Также широко применяется устаревающее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген (Р, англ. roentgen, R): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)·10−9 кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм (Кл/кг, англ. C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2,57976·10−4 Кл/кг. [10]

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (Бк, англ. Becquerel, Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (Ки, англ. Ci). 1 Ки = 3,7·1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (эВ). Как правило радиоактивный источник генерирует частицы с определенным спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Для альфа-излучения и осколков ядер коэффициент качества 10…20. Нейтроны — 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Единицы измерения[править | править исходный текст]

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (Зв, англ. sievert, Sv).

Ранее широко применялась единица измерения эквивалентной дозы бэр (Биологический Эквивалент Рентгена для гамма-излучения, англ. rem). Эквивалентная доза 1 бэр соответствует облучению гамма-квантами с поглощённой дозой 1 рентген. Эквивалентная поглощённая доза приводится к поглощённой дозе гамма-излучения, поскольку массовые измерительные приборы регистрируют в основном именно гамма-излучение, и такая величина наиболее соответствует возможностям измерений. Для рентгеновского и гамма-излучений 1 бэр = 0,01 Зв, соответственно принимают, что 1 рентген = 0,01 Зв.

Помимо биологической эффективности, необходимо учитывать проникающую способность излучений. Например, тяжёлые ядра атомов и альфа-частицы имеют крайне малую длину пробега в сколько-нибудь плотном веществе, поэтому радиоактивные альфа-источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью.

Некоторые радиоактивные изотопы способны встраиваться в процесс обмена веществ живого организма, замещая неактивные элементы. Это приводит к удержанию и накоплению радиоактивного вещества непосредственно в живых тканях, что существенно увеличивает опасность контакта. Например, широко известны йод-131, изотопы стронция, плутония и т.п.. Для характеристики этого явления используется понятие период полувыведения изотопа из организма.

Механизмы биологического воздействия[править | править исходный текст]

См. также: Радиобиология и Порог дозы

Первичное действие ионизирующих излучений — это прямое попадание в биологические молекулярные структуры клеток и в жидкие (водные) среды организма. Вторичное действие — действие свободных радикалов, возникающих в результате ионизации, создаваемой излучением в жидких средах организма и клеток. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации)[12].

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки или радиационные аварии. Специалисты наблюдали 87 500 человек, переживших атомные бомбардировки. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9 %. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.[13]

Гигиеническое нормирование ионизирующих излучений[править | править исходный текст]

См. также: Радиационная безопасность

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эффективной дозы для следующих категорий лиц:

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Радиация действительно опасна: в больших дозах она приводит к поражению тканей, живой клетки, в малых - вызывает раковые явления и способствует генетическим изменениям. Как правило самым опасным воздействием считается воздействие на 12-ть самых проблемных мест организма. Этими «местами» являются: половые железы, молочные и щитовидная железы, красный костный мозг, легкие, надпочечники, поверхность ближайшей костной ткани, язык, глаза, слюнные железы, хрусталик и гипофиз. Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, бесплодие, катаракту, лейкоз и злокачественные опухоли. Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение, гораздо опаснее, чем для взрослых.

Рефреном многих тысяч научных статей и сотен книг, опубликованных на Западе и Востоке и написанных учеными, связанными с развитием атомной индустрии, служит тезис о принципиальной допустимости, приемлемости, а порой даже благотворности, влияния малых доз искусственной радиации на живое, включая человека.

В этом огромном потоке литературы для широкого читателя теряются крайне тревожные работы, говорящие об обратном, об опасности влияния искусственной, дополнительной к естественному радиационному фону, радиации на живое даже в малых дозах.

Особое внимание именно к малым дозам радиации понятно: общество интуитивно защищается от возможных опасностей, и линия этой защиты выражается в установлении приемлемых уровней облучения - норм радиационной безопасности. Эти нормы отражают уровень общественного понимания и ощущения опасности.

Поскольку искусственная радиация самыми разными путями все активнее вторгается в жизнь человечества (кроме атомной энергетики это и медицина, и пищевая промышленность, и строительство, и транспорт, и оборона), то хотя бы из чувства самосохранения мы должны вовремя обнаруживать возможные опасности.

Это особенно важно потому, что энтузиасты атомных технологий с помощью финансируемых ими институтов и экспертов вольно или невольно стараются приуменьшить такие опасности и убрать их вообще из поля зрения общества. Делается это под вполне благовидными требованиями "не нагнетать радиофобию", и "оставить решение вопросов специалистам". Однако именно для того, чтобы не распространялась радиофобия, общество должно знать реальные опасности и факты. Нельзя и оставить этот вопрос для решения специалистов. Ниже будет показано, как глубоко наше незнание в области воздействия малых доз радиации.

ПОСЛЕДСТВИЯ ВЛИЯНИЯ РАДИАЦИИ НА ВЗРОСЛЫЙ ОРГАНИЗМ

Огромное количество новых фактов, касающихся воздействия радиации, дали трагические последствия двух грандиозных радиационных катастроф: южно-уральской 1957 г. и чернобыльской 1986 г., затронувших жизни в первом случае нескольких сот тысяч человек, а во втором - многих миллионов...

Кратко перечислю основные установленные факты воздействия радиации на взрослый организм млекопитающих, включая человека. До 50-х годов основным фактором непосредственного воздействия радиации считалось прямое радиационное поражение некоторых особо радиочувствительных органов и тканей - кожи, костного мозга и центральной нервной системы, желудочно-кишечного тракта (так называемая лучевая болезнь). Вскоре выяснилось, что огромную роль в лучевом поражении играет не только общее внешнее облучение организма, но и внутреннее облучение, связанное с концентрированном в отдельных органах и тканях так называемых инкорпорированных радионуклидов, поступивших в организм с пищей, водой, атмосферным воздухом и через кожу и задержавшихся в каких-то органах или тканях.

Для оценки влияния этих радионуклидов пришлось ввести специальные понятия "поглощенной" и (для разных видов излучения) "эквивалентной" доз, измеряемых особыми условными единицами: грей (Гр) и зиверт (Зв). (Подробнее об этих и других специальных понятиях смотрите на страницах 4-5 данного номера бюллетеня "Гражданская инициатива" - примеч. редакции).

В 60-70-х гг. большое внимание стали уделять не только прямым (острым), но и опосредованным и отдаленным эффектам облучения. Среди них:

Среди других известных проявлений действия радиации на организм человека: появление рака в более молодом возрасте (акселерация или омоложение рака), физиологические расстройства (нарушение работы щитовидной железы и др.), сердечно-сосудистые заболевания, аллергии, хронические заболевания дыхательных путей. В таблице приведена общая схема влияния средних и малых доз радиации на организм человека.

С течением времени список радиационно-стимулированных заболеваний не сокращается, а только растет. При этом оказывается, что весьма малые дозы способны вызвать негативные последствия для здоровья (см. ниже).


Воздействие средних и малых доз ионизирующей радиации на здоровье человека (Bertell, 1985)

Доза на всё тело, Гр Немедленный результат Отдалённый результат
0.1 - 0.5 У большинства нет реакции. У чувствительных развивается лучевая болезнь Поражение лимфоцитов и нейтрофилов. Преждевременное старение. Генетическое поражение потомства. Увеличесние риска возникновения рака.
До 0.1 Нет реакций Преждевременное старение. Увеличение числа небольших мутаций (связанных с астмой, аллергиями и т.п.) в потомстве. Дополнительный риск возникновения рака. Воздникновение уродств в потомстве.

Выяснилось также, что действие радиации на здоровье может зависеть от продолжительности воздействия: одна и та же доза радиации, получаемая за короткий промежуток времени, вызывает меньшие поражения, чем доза, полученная за длительный период (Nussbaum, 1996).


ВЛИЯНИЕ РАДИАЦИИ НА РАЗВИТИЕ ПЛОДА

Дополнительное к природному продолжительное облучение даже в небольших дозах влияет на развитие плода у млекопитающих: вызывает преждевременные роды, увеличивает процент мертворожденных, отрицательно сказывается на младенческой и детской смертности и общей заболеваемости. На рисунке (рисунок помещен на первой странице "Гражданской инициативы" - примеч. редакции) и в таблице названы основные последствия действия радиации в больших дозах на человека.


Некоторые последствия облучения плода млекопитающих (по: Ярмоненко, 1988)

  • Гибель: плода, новорожденных или младенцев;
  • Поражения нервной системы:
    • отсутствие (анцефалия) и\или уменьшение размеров
    • головного мозга (микроцефалия) и черепно-мозговых нервов;
    • умственная отсталость;
    • идиотия;
    • заболевания мозга (нейробластома, водянка);
  • Поражения органа зрения:
    • отсутствие одного или обоих глаз (анофтальмия);
    • недоразвитие глаз (микрофтальмия);
    • поражение (вплоть до отсутствия) хрусталика;
    • деформация радужной оболочки;
    • поражение (вплоть до отсутствия) сетчатки;
    • незакрывающиеся веки;
    • косоглазие;
    • дальнозоркость;
    • врожденная глаукома;
  • Нарушения роста и формы тела:
    • карликовость;
    • задержка роста и снижение массы тела;
    • изменение формы черепа;
    • воронкообразная грудь;
    • врожденный вывих бедра;
    • деформация и атрофия конечностей;
  • Нарушения в развитии зубной системы:
  • Нарушения в развитии внутренних органов (сердца, почек, яичников, семенников и др.).

Первые данные об опасном влиянии малых доз радиации при внутриутробном облучении были получены еще в 1956 г.: факты, приведенные А.Стьюарт в журнале "Ланцет" (одном из наиболее серьезных медицинских журналов в мире), свидетельствовали, что дети умершие от рака в Англии в 1953-1955 гг., получили внутриутробно вдвое большую дозу радиации при рентгеновском исследовании матерей, чем не заболевшие раком (Schneider, 1990).

Недавно на основании наблюдений в Челябинске-65 - печально знаменитом ПО "Маяк" - было выяснено, что дети матерей, получивших во время беременности сравнительно небольшие дозы (около 0.05 Зв), имели устойчивые отклонения в соотношении роста, объема грудной клетки и веса (Ларин, 1994. С.8). Эти данные вполне соответствуют давно отмеченным в научной литературе фактам большей радиочувствительности ранних стадий развития организма млекопитающих.

В таблице (ниже) приведены расчетные данные по влиянию дозы облучения на возникновение лейкемии (рака крови) в зависимости от возраста облученных (по данным для переживших атомные бомбардировки Хиросимы и Нагасаки).


Вероятность развития лейкемии (рака крови) в зависимости от возраста облученных
(Sumner et.al., 1991. С. 146)

Возраст облучения Вероятность лейкемии на дозу в один Зв
В утробе матери До 10 лет 11-24 г. 0.0125 0.0065 0.0035

Из этих данных видно, что вероятность заболеть раком крови при облучении эмбриона или плода еще в утробе матери почти в четыре раза выше, чем при таком же уровне облучения молодого человека в возрасте 11- 24 лет. Вероятность для малыша родиться с какими-либо уродствами начинается при получении матерью всего лишь 0.002 Зв (2 мЗв) за время беременности на область живота (Principles..., 1993).

Облучение матери в определенный период беременности дозой в 0.001 Зв удваивает вероятность рождения ребенка с умственными дефектами (Корогодин, 1990). Но эти вероятности (стохастический эффект облучения) превращаются в неизбежность (детерминированный эффект облучения) при разовом получении плодом 0.25 Зв после 28-го дня беременности (Bertell, 1985)


НЕДОСТАТОЧНОСТЬ СОВРЕМЕННЫХ ЗНАНИЙ О ВЛИЯНИИ МАЛЫХ ДОЗ РАДИАЦИИ

Насколько мы еще далеки от познания многих существенных особенностей действия радиации, свидетельствует, например, тот факт, что лишь сравнительно недавно стало ясно, что доза радиации, поглощенная организмом в течение длительного периода времени, может привести к существенно более сильному поражению, чем такая же доза, полученная сразу или за более короткий период (так называемый эффект Петко). В то же время в отношении ряда раковых заболеваний установлено, что отмеченная выше закономерность не всегда действует: фракционное, растянутое во времени, облучение иногда дает меньший канцерогенный эффект, чем разовое (Goldman, 1996). Это связано, по-видимому, с репарационными (восстановительными) свойствами живого организма, в котором при размножении клеток всегда существует некий механизм исправления (репарации) возможных генетических ошибок, могущих нарушить последующее развитие организма. Восстановительные процессы имеют предел, но какие то мелкие повреждения они могут "залечивать".

В то же время известно, что при уменьшении дозы облучения риск заболеть раком не просто уменьшается в той же пропорции - просто латентный период перед проявлением заболевания становится большим (Goldman, 1996).

Несомненно, в области выяснения влияния малых доз нас ждут новые открытия. Одно из направлений таких открытий становится ясным сейчас: эффекты взаимодействия радиации с другими факторами риска, порознь не так опасными. Оказалось, например, что малые количества пестицидов могут усиливать действие радиации. То же самое происходит при действии радиации в присутствии небольших количеств ртути (Mercury..., 1994). Недостаток селена в организме усиливает тяжесть радиационного поражения. Известно, что у курильщиков, подвергающихся облучению в 15 мЗв/год, риск заболеть раком легких возрастает более чем в 16 раз по сравнению с некурящими (Anderson, 1991). Известно также, что на фоне небольшого по величине хронического облучения разовое кратковременное дополнительное облучение дает эффект, много более значимый, чем при простом суммировании этих доз (Москалев, Стрельцова, 1987).

Другое быстро развивающееся направление изучения влияния малых доз облучения - работы школы профессора Е.Б.Бурлаковой, убедительно доказавшие на многих объектах резкое нарушение монотонной зависимости "доза - эффект": в зоне сверхмалых доз облучения происходит до конца непонятное по механизмам, но устойчиво повторяющееся резкое возрастание чувствительности организмов облучению (рис.3.4). Оказывается, при облучении до 0.1 Зв (10 бэр) число смертельных лейкозов оказывается столь же значительным, как при облучении многократно большем (Бурлакова, 1995).

Оказалось также, что повреждения хромосом и злокачественная трансформация клеток при малых дозах примерно на порядок выше, чем можно было бы ожидать при экстраполяции влияния от высоких доз (Корогодин, 1990. С.51). Возможно, эффект такого взаимодействия радиации с другими факторами риска основан на сенсибилизации (повышении чувствительности) организма, испытавшего воздействие малых доз облучения к химическим мутагенам и канцерогенам (Корогодин, 1990).

Среди других поставленных современной наукой вопросов о негативном воздействии малых доз радиации на живой организм, которые, по всей вероятности, расширят в ближайшем будущем наши представления об опасности облучения человеческого организма, надо, по крайней мере, перечислить следующие (Корогодин, 1990; Шевченко, 1990):

При обсуждении проблемы влияния малых доз радиации необходимо иметь в виду так называемое правило пропорционального риска (Шевченко, 1990), которое в нашем случае можно сформулировать так: облучение большого числа людей малыми дозами эквивалентно (с точки зрения влияния радиации на всю популяцию) облучению небольшого числа людей большими дозами. Генетический риск для 100 человек, получивших дозу 0.01 Зв, эквивалентен, с точки зрения поражения популяции, риску для 10 человек, получивших дозу 0.1 Зв, и риску для одного человека, получившего дозу 1.0 Зв. На самом деле зависимость, конечно сложнее, поскольку эквивалентность результатов облучения многих малыми дозами и немногих - большими, подразумевает линейную зависимость доза - эффект, которая (линейность) нарушается, как говорилось выше, в области сверхмалых доз.

Итак, хотя о влиянии малых доз радиации на живой организм написано множество научных статей и монографий, здесь неизвестного больше, чем известного. Это особенно наглядно видно при рассмотрении проблемы нормирования действия радиации.


ПРОБЛЕМЫ, СВЯЗАННЫЕ С НОРМИРОВАНИЕМ ВОЗДЕЙСТВИЯ РАДИАЦИИ

Выдающийся шведский радиобиолог Р.М.Зиверт еще в 1950 г. пришел к заключению, что для действия радиации на живые организмы нет порогового уровня. Пороговый уровень - это такой, ниже которого не обнаруживается поражения у каждого облученного организма [так называемый детерминированный (определенный) эффект]. При облучении в меньших дозах эффект будет стохастическим (случайным), т. е. определенные изменения среди группы облученных обязательно возникнут, но у кого именно - заранее неизвестно.

Отсутствие порогового уровня при действии радиации не исключает существования приемлемого по опасности для общества уровня облучения. Общество приемлет развитие автомобильного транспорта, хотя под колесами машин гибнут десятки тысяч человек ежегодно, и многократно большее число страдает от загрязнения воздуха автомобильными выбросами. Это означает, что выгоды и удобства от пользования автомобилем превосходят в общественном сознании связанные с автомобилем опасности и неприятности.

Хорошо известны опасности, связанные с облучением большими дозами. Это и преждевременная смерть людей, и лучевая болезнь, и другие тяжелые заболевания, а также поражения наследственности, уже коснувшиеся многих миллионов людей.

Негативное влияние малых доз, если справедливы опасения многих исследователей, не согласных с успокоительными утверждениями ученых (как правило, связанных с атомной индустрией), грозят не миллионам, а десяткам (и сотням) миллионов людей, ставит под угрозу само существование человечества. Перевешивает ли эта угроза и уже проявляющееся воздействие малых доз радиации положительные эффекты, получаемые обществом от развития атомной индустрии? Ответ на этот вопрос дает нормирование радиационного воздействия. Нормы радиационной безопасности - это те границы, которые общество ставит перед атомной индустрией, исходя из имеющихся знаний...

Для населения пределы приемлемо опасной дозы (напомню, что абсолютно безопасной дозы нет) были впервые установлены лишь в 1952 г. Они составляли тогда 15 мЗв/год. Уже в 1959 г. пришлось уменьшить эту дозу до 5 мЗв/год, а в 1990 г. - до 1 мЗв/год. Сейчас все больше специалистов настаивают на дальнейшем уменьшении этой дозы - до 0.25 мЗв/год (обзор см.: Green, 1990). В некоторых штатах США уже установлена максимальная допустимая годовая доза искусственного облучения для населения 0.1 мЗв/год (Aubrey et al., 1990. Р.103)...


ТАК ЕСТЬ ЛИ ПРИЕМЛЕМЫЙ УРОВЕНЬ ОБЛУЧЕНИЯ?

Я думаю, что принципиально правильный путь поиска пределов приемлемого уровня облучения предложен был еще в 1955 г. сотрудником Российского научного центра "Курчатовский институт" Ю.В.Сивинцевым. Он проанализировал историческую тенденцию к многократному сокращению предельно допустимых доз облучения и заключил: "Из изложенного вытекает порочность подхода к вопросу об установлении предельно допустимых уровней излучения, исходя из анализа повреждающего действия излучений..." (Сивинцев, I960. С.7).

Ю.В.Сивинцев и независимо от него ряд американских ученых (Morgan et al., 1958) предложили взять за точку отсчета фоновое, естественное облучение, к которому эволюционно приспособлено все живое на Земле, и считать приемлемым уровнем его удвоенную величину. Соглашаясь с точкой отсчета (фоновый уровень облучения), не могу согласиться с формальным удваивающим коэффициентом. Почему два, а не полтора, три или четыре?

На основании множества примеров в общей экологии было установлено так называемое правило 11%: любая сложная система в среднем статистически выносит без нарушения функций изменения не более 11% ее составляющих (Реймерс, Яблоков, 1982). Поэтому логичнее считать безопасным превышение фонового уровня не более чем на 11%. Таким образом, если учесть, что фоновое естественное облучение от всех источников (космические лучи, радон и др.) для 95% человечества составляет 0.3-0.6 мЗв/год (Рябцев, 1996), приемлемо опасной должна быть дополнительная доза облучения не более чем 0.03 - 0, Об мЗв/год.

К поиску приемлемого уровня облучения можно подойти и с другой стороны. Из общей теории риска следует, что в современном цивилизованном обществе считается приемлемым риск дополнительного заболевания или смерти 1 человека на 1 млн. Это риск для каждого из нас ежегодно быть убитым молнией, и принимаемые меры предосторожности здесь минимальны (громоотводы на высоких зданиях).

Принятый сейчас допустимый предел дозы искусственного облучения 1 мЗв/год по правилу пропорционального риска (см. выше) соответствует генетическому поражению до 35 человек на каждый миллион новорожденных (т. е. оказывается в 5-35 раз выше), или (при учете хронического облучения в чреде многих поколений) дает 450-3400 случаев наследственных аномалий на 1 млн новорожденных (Шевченко, 1989). Исходя из этого, допустимая и приемлемая безопасная индивидуальная доза должна быть в десятки раз меньше, чем 1 мЗв/год, т. е., могла бы составлять меньше 0.01 мЗв/год.

Сейчас эти величины дозы (0.01 - 0.06 мЗв/год) выглядят несколько фантастично, но, судя по темпу ужесточения радиационных норм в XX в., уже через 20-25 лет они могут быть приняты.

Я хорошо представляю, что найдется немало несогласных с приведенными выше расчетами, и предвижу их основной аргумент: масштабы возможного поражения малыми дозами радиации во много раз ниже, чем вероятность гибели людей под колесами автомобиля или смерти курильщика от рака легких. С точки зрения простой арифметики они правы. Но по существу они не правы по крайней мере по трем причинам.

Во-первых, известный на сегодня риск поражения малыми дозами радиации составляет лишь долю реально существующего спектра поражения:
мы просто еще не знаем всех последствий действия радиации на живой организм.

Во-вторых, тысячам семей, которым малые дозы радиации принесли непоправимые поражения, не легче от того, что большее число семей пострадало от автомобильных катастроф.

В-третьих, радиационные поражения принципиально отличаются от поражения человека в любой катастрофе тем, что они генетические, т. е. передаются из поколение в поколение и распространяются в популяции...

Итак, на вопрос, поставленный в начале этого раздела: "Есть ли приемлемый уровень облучения?" - ответ может быть только такой: нет и не может быть единого, для всех одинакового приемлемо-опасного уровня облучения. В одних местностях для одних групп населения приемлемо-опасный уровень может быть один, в других местностях и для других групп - другой. Приемлемо-опасный уровень облучения для одного человека в одной и той же возрастно-половой и этнической группе будет одним, а для другого человека из той же группы - другим. Наконец, в разное время дня и в разные сезоны года радиочувствительность одного и того же человека будет различной.

Все сказанное выше, на мой взгляд, убедительно показывает бесперспективность и научную необоснованность широко бытующего понятия о "безопасной дозе облучения". Для каждого организма в каждый данный момент времени уровень примлемо-опасного облучения будет различным.

47. Лучевая болезнь.

Лучева́я боле́знь — заболевание, возникающее в результате воздействия различных видов ионизирующих излучений и характеризующееся симптоматикой, зависящей от вида поражающего излучения, его дозы, локализации источника излучения, распределения дозы во времени и теле живого существа (напр. человека).

У человека лучевая болезнь может быть обусловлена внешним облучением (внутренним — при попадании радиоактивных веществ в организм с вдыхаемым воздухом, через желудочно-кишечный тракт или через кожу и слизистые оболочки, а также в результате инъекции).

Общие клинические проявления лучевой болезни зависят, главным образом, от полученной суммарной дозы радиации. Дозы до 1 Гр (100 рад) вызывают относительно лёгкие изменения, которые могут рассматриваться как состояние предболезни. Дозы свыше 1 Гр вызывают костно-мозговую или кишечную формы лучевой болезни различной степени тяжести, которые зависят главным образом от поражения органов кроветворения. Дозы однократного облучения свыше 10 Гр считаются абсолютно смертельными.

Острая лучевая болезнь[править | править исходный текст]

Основная статья: Острая лучевая болезнь

Хроническая лучевая болезнь[править | править исходный текст]

Хроническая ЛБ — развивается в результате длительного непрерывного или фракционированного облучения организма в дозах 0,1—0,5 Гр/сут при суммарной дозе, превышающей 0,7—1 Гр. ХЛБ при внешнем облучении представляет собой сложный клинический синдром с вовлечением ряда органов и систем, периодичность течения которого связана с динамикой формирования лучевой нагрузки, т. е. с продолжением или прекращением облучения. Своеобразие ХЛБ состоит в том, что в активно пролиферирующих тканях, благодаря интенсивным процессам клеточного обновления, длительное время сохраняется возможность морфологического восстановления тканевой организации. В то же время такие стабильные системы, как нервная, сердечно-сосудистая и эндокринная, отвечают на хроническое лучевое воздействие сложным комплексом функциональных реакций и крайне медленным нарастанием незначительных дистрофических изменений.

Отдалённые последствия облучения[править | править исходный текст]

Отдалённые последствия облучения — соматические и стохастические эффекты, проявляющиеся через длительное время (несколько месяцев или лет) после одноразового или в результате хронического облучения.

Включают в себя:

Принято различать два типа отдаленных последствий — соматические, развивающиеся у самих облучённых индивидуумов, и генетические — наследственные заболевания, развивающиеся в потомстве облучённых родителей.

К соматическим отдалённым последствиям относят прежде всего сокращение продолжительности жизни, злокачественные новообразования и катаракту. Кроме того, отдалённые последствия облучения отмечают в коже, соединительной ткани, кровеносных сосудах почек и лёгких в виде уплотнений и атрофии облучённых участков, потери эластичности и других морфофункциональных нарушениях, приводящих к фиброзам и склерозу, развивающимся вследствие комплекса процессов, включающих уменьшение числа клеток, и дисфункцию фибробластов.

Деление на соматические и генетические последствия весьма условно, так как характер повреждения зависит от того, какие клетки подверглись облучению, т. е. в каких клетках это повреждение возникло — в соматических или зародышевых. В обоих случаях повреждается генетический аппарат, а следовательно, и возникшие повреждения могут наследоваться. В первом случае они наследуются в пределах тканей данного организма, объединяясь в понятие соматического мутагенеза, а во втором — также в виде различных мутаций, но в потомстве облучённых особей.

48. Загрязнение воды. Загрязнение пресных вод — попадание различных загрязнителей в воды рек, озер, подземных вод. Происходит при прямом или непрямом попадании загрязнителей в воду в отсутствие адекватных мер по очистке и удалению вредных веществ.

В большинстве случаев загрязнение пресных вод остаётся невидимым, поскольку загрязнители растворены в воде. Но есть и исключения: пенящиеся моющие средства, а также плавающие на поверхности нефтепродукты и неочищенные стоки. Есть несколько природных загрязнителей. Находящиеся в земле соединения алюминия попадают в систему пресных водоёмов в результате химических реакций. Паводки вымывают из почвы лугов соединения магния, которые наносят огромный ущерб рыбным запасам.

Однако объём естественных загрязняющих веществ ничтожен по сравнению с производимыми человеком. Ежегодно в водные бассейны попадают тысячи химических веществ с непредсказуемым действием, многие из которых представляют собой новые химические соединения. В воде могут быть обнаружены повышенные концентрации токсичных тяжёлых металлов (как кадмия, ртути, свинца, хрома), пестициды, нитраты и фосфаты, нефтепродукты, поверхностно-активные вещества (ПАВЫ), лекарственные препараты. Как известно, ежегодно в моря и океаны попадает до 12 млн тонн нефти.

Определенный вклад в повышение концентрации тяжелых металлов в воде вносят и кислотные дожди. Они способны растворять в грунте минералы, что приводит к увеличению содержания в воде ионов тяжелых металлов. С атомных электростанций в круговорот воды в природе попадают радиоактивные отходы.

Сброс неочищенных сточных вод в водные источники приводит к микробиологическим загрязнениям воды. По оценкам Всемирной организации здравоохранения (ВОЗ) 80 % заболеваний в мире вызваны неподобающим качеством и антисанитарным состоянием воды. В сельской местности проблема качества воды стоит особенно остро — около 90 % всех сельских жителей в мире постоянно пользуются для питья и купания загрязненной водой.

Загрязнители попадают в пресную воду различными путями: в результате несчастных случаев, намеренных сбросов отходов, проливов и утечек.

Крупнейший потенциальный источник загрязнения — фермерские хозяйства, занимающие в Англии и Уэльсе почти 80 % земель. Часть покрывающего почву необработанного навоза животных проникает в источники пресной воды.

Кроме того, фермеры Англии и Уэльса ежегодно вносят в почву 2,5 млн тонн азота, фосфора и калия, и часть этих удобрений попадает в пресную воду. Некоторые из них — стойкие органические соединения, проникающие в пищевые цепи и вызывающие экологические проблемы. Сегодня в Великобритании свёртывают производство хлорорганических соединений, выпускаемых в больших количествах в 1950-е гг.

Всё большую угрозу для пресноводных водоёмов представляют стоки, сбрасываемые рыбоводческими хозяйствами, ввиду широкого применения ими фармацевтических средств борьбы с болезнями рыб.

Быстрое загрязнение подземных вод вокруг городов. Источник — возрастающее число загрязнённых скважин вследствие неправильной эксплуатации.


Лесные хозяйства и открытый дренаж — источники большого количества веществ, попадающих в пресную воду, в первую очередь железа, алюминия и кадмия. С ростом деревьев кислотность лесной почвы увеличивается, и проливные дожди образуют очень кислые стоки, губительные для живой природы.

Попав в реку, навозная жижа может стать причиной серьёзной экологической катастрофы, так как её концентрация в 100 раз больше, чем у сточных вод, обработанных на очистных сооружениях.

Атмосферное загрязнение пресной воды особенно пагубно. Есть два вида таких загрязнителей: грубодисперсные (зола, сажа, пыль и капельки жидкости) и газы (сернистый газ и двуокись азота). Все они — продукты промышленной или с/х деятельности. Когда в дождевой капле эти газы соединяются с водой, образуются концентрированные кислоты — серная и азотная.

Твёрдые и жидкие загрязняющие вещества попадают из почвы в источники водоснабжения в результате т. н. выщелачивания. Небольшие количества сваленных на землю отходов растворяются дождём и попадают в грунтовые воды, а затем в местные ручьи и реки. Жидкие отходы быстрее проникают в источники пресной воды. Растворы для опрыскивания сельскохозяйственных культур либо теряют свою активность при контакте с почвой, либо попадают в местные реки, либо выщелачиваются в земле и проникают в грунтовые воды. До 80 % таких растворов тратятся впустую, так как попадают не на объект опрыскивания, а в почву.

Время, требуемое для проникновения загрязнителей (нитратов или фосфатов) из почвы в грунтовые воды, точно неизвестно, но во многих случаях этот процесс может длиться десятки тысяч лет. Загрязняющие вещества, поступающие в окружающую среду от промышленных предприятий, называют промышленными стоками и выбросами.

Всё большую актуальность приобретает загрязнение подземных вод. С помощью современных технологий человек всё интенсивнее использует подземные воды, истощая и загрязняя их. Вокруг городов бурно развивается частное строительство жилья и мелких предприятий, с автономным водоснабжением. Например, в Подмосковье ежедневно бурится от 50 до 200 скважин разной глубины. По разным причинам (незнанию например), подавляющее большинство скважин эксплуатируется без соблюдения правил пользования такими источниками воды. Это приводит к быстрому локальному загрязнению подземных вод этого региона.

На загрязнения могут указывать такие признаки, как мёртвая рыба, но есть и более сложные методы его обнаружения. Загрязнение пресной воды измеряется в показателях биохимической потребности в кислороде (БПК) — то есть сколько кислорода поглощает загрязнитель из воды. Этот показатель позволяет оценить степень кислородного голодания водных организмов.

Тяжёлые металлы[править | править исходный текст]

Свинец встречается в пресной воде в растворённом виде. Один из источников свинцового загрязнения — рыболовные грузила, которые постоянно выбрасывают при запутывании лески. От свинца сильно страдают лебеди, проглатывающие грузила вместе с водорослями. Он остаётся в желудке птиц, постепенно растворяясь и вызывая их смерть. «Сломанная шея» (когда мышцы не могут держать длинную шею птицы, и в результате она медленно умирает от голода) является признаком свинцового отравления. Другой тяжёлый металл, кадмий, проникает в пресноводную среду, поражает рыб, а через них попадает в организм человека.

Законодательство[править | править исходный текст]

Законы — действенное средство предотвращения загрязнения, но добиться их соблюдения трудно. Поэтому новая международная инициатива — «платит сторона, виновная в загрязнении» — идеальна по сути, но редко даёт плоды. Всемирная организация здравоохранения (ВОЗ) опубликовала рекомендации по допустимым уровням загрязнения. Например, содержание кадмия в воде не должно превышать 3/1000 мг/л.

Англия, вероятно, первой в мире приняла закон о загрязнении рек, поскольку ещё в 1197 г. король Ричард I Львиное Сердце подписал первую хартию о Темзе.

Сегодня Европейское Сообщество издаёт директивы о качестве воды, но правительства европейских стран не спешат выполнять эти требования. Так, в 1992 г. 9 из 12 стран — членов ЕС превысили уровень содержания нитратов в своих водоёмах. По новому законодательству, от всех членов ЕС требовалось к 2002 г. создать специальные очистные станции для обработки воды для городского и промышленного потребления, чтобы предотвратить загрязнение рек. В большинстве стран эта работа выполнена.

Как реагируют организмы на загрязнения воды?

Первой реакцией живого организма на проникновение загрязнителя является приведение в действие защитных механизмов. В большинстве случаев это приводит к обезвреживанию токсинов, но иногда в реакциях могут вырабатываться и более токсичные вещества, повреждающие клетку сильнее, чем исходный субстрат.

Другой механизм – связывание загрязнителей молекулами других веществ; полученные в результате вещества или выводятся, или откладываются в тканях.

Еще один механизм – устранение повреждений, вызванных загрязнителем.

Основные эффекты воздействия загрязнителей на организм

Загрязнители воды влияют на организм по-разному, что зависит и от загрязнителя, и от организма.

Генотоксичность

Некоторые соединения, проникающие в организм, могут вызвать повреждение структуры ДНК. Они называются генотоксинами. В таких случаях включается механизм восстановления исходной структуры ДНК. Но если по каким-то причинам это невозможно, клетки с аномальной ДНК могут делиться. Если мутантные клетки начнут безудержное деление, это может привести к серьезным отрицательным последствиям, в том числе для будущего потомства. Примеры генотоксинов – полиароматические углеводороды, афлатоксин, винил-хлорид.

Канцерогенность

Некоторые загрязнители являются канцерогенами, то есть способны провоцировать рак у человека и животных. Они могут быть инициаторами изменений, в результате которых клетка приобретает свойства раковой. Они также могут быть активаторами роста таких клеток. Наконец, они могут быть стимуляторами безудержного деления и разрастания раковых клеток.

При злокачественной опухоли клетки в ней делятся с огромной скоростью, повреждая здоровые клетки и нарушая иммунные механизмы.

Нейротоксичность

Нервная система организма очень восприимчива к интоксикациям, естественным или искусственным (возникшим в результате человеческой деятельности). Химические вещества, повреждающие нервную систему, называются нейротоксинами. Пример – инсектициды.

Последствия нейроинтоксикации бывают различными. Могут появиться нескоординированные мышечные сокращения, нарушение функции нервов или нейропроводимости, головокружение и слабость, или даже нарушение функций отдельных частей тела. Нейроинтоксикация может быть такой сильной, что блокируются нервные синапсы. А это приводит к смерти в результате паралича диафрагмы и дыхательной недостаточности.

Нарушение энергетического обмена

Превращения энергии в организме происходит в клеточных структурах – митохондриях. В митохондриях образуется молекула АТФ, доставляющая энергию всем органам. Если производство АТФ нарушено, передача энергии по организму прекращается. Это приводит к слабости и невозможности нормально функционировать.

Репродуктивная недостаточность

Эндогенные деструкторы – вещества, приводящие к репродуктивной недостаточности вследствие нарушения работы репродуктивных (половых) органов. Пример – эстрогенные вещества, имитирующие эстроген; связываются с рецепторами эстрогена. В результате этого запускаются эстрогенные процессы, возникает репродуктивная недостаточность. Имитаторы эстрогена блокируют эндогенный эстроген, и это приводит к маскулинизации женского организма, то есть женский организм приобретает черты мужского. Возможно также обнаружение женских гормонов в организме мужской особи. Возникает гермафродитизм. Обоеполость – широко распространенное явление среди морских организмов.

Другой вид нарушений – блокировка рецепторов гормонов. Если это происходит в течение долгого времени, может возникнуть бесплодие.

Нарушение поведенческих реакций

Поведение живых организмов может меняться под воздействием загрязнителей. Общее действие загрязнения – снижение аппетита и, как следствие, сокращение потребления пищи. Поиск добычи также может быть затруднен из-за влияния загрязнителей на процессы приобретения навыков, поисковую стратегию и органы чувств. Эти поведенческие изменения приводят к уменьшению выживаемости многих животных.

Одно из свойств загрязнителей, о котором нужно помнить всегда – их способность взаимодействовать друг с другом. В результате таких реакций могут возникнуть соединения, полностью нивелирующие отрицательный эффект загрязнителей, или наоборот появляются еще более токсичные вещества.

49. Загрязнения нитратами – какие болезни. Нитраты проникают в наш организм через овощи и фрукты, поскольку нитраты служат удобрением для сельскохозяйственных продуктов. Нельзя сказать, что это происходит из-за того, что овощи или фрукты были плохо вымыты. Растения накапливают нитраты в верхних слоях своих плодов. То есть в картошке кожура будет богата на нитраты, в капусте – верхние листья и так далее. Как показывает практика, особенно опасны арбузы.

Нитраты служат питательными веществами для растений. Они поставляют сельскохозяйственным продуктам азот, с помощью которого растения выстраивают свои клетки. Но в случае, когда удобрение почвы не сбалансировано, нитраты начинают накапливаться в растениях и становятся ядом для человека, употребляющего этот плод в пищу.





Дата публикования: 2015-02-03; Прочитано: 470 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.031 с)...