Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение локализации источника звука вертикальной плоскости. Слуховые аппараты и протезы. Тимпанометрия



Рассмотрим теперь случай, когда источник звука расположен в вертикальной плоскости, ориентированной перпендикулярно прямой, соединяющей оба уха. В этом случае он одинаково удален от обоих ушей и разности фаз не возникает. Значения интенсивности звука, попадающего в правое и левое ухо, при этом совпадают. На рисунке 4.8 показаны два таких источника (А и С). Различит ли слуховой аппарат эти источники? Да. В данном случае это произойдет благодаря особой форме ушной раковины, которая (форма) способствует определению локализации источника звука.

Звук, исходящий от этих источников, падает на ушные раковины под различными углами. Это приводит к тому, что дифракция звуковых волн на ушных раковинах происходит по-разному. В результате на спектр звукового сигнала, попадающего в наружный слуховой проход, накладываются дифракционные максимумы и минимумы, зависящие от положения источника звука. Эти различия и позволяют определять положение источника звука в вертикальной плоскости. По всей видимости, в результате огромного опыта слушания люди научились ассоциировать различные спектральные характеристики с соответствующими направлениями. Это подтверждается опытными данными. В частности, установлено, что специальным подбором спектрального состава звука ухо можно «обмануть». Так, человек воспринимает звуковые волны, содержащие основную часть энергии в области 1 кГц,

 

Рис. 4.8. Различная локализация источника звука в вертикальной плоскости

локализованными «сзади» независимо от действительного направления. Звуковая волна с частотами ниже 500 Гц и в области 3 кГц воспринимается локализованной «спереди». Звуковые источники, содержащие большую часть энергии в области 8 кГц, распознаются локализованными «сверху».

Потеря слуха в результате нарушения проведения звука или частичного поражения звуковосприятия может быть компенсирована с помощью слуховых аппаратов-усилителей. В последние годы в этой области происходит большой прогресс, связанный с развитием аудиологии и быстрым внедрением достижений электроакустической аппаратуры на основе микроэлектроники. Созданы миниатюрные слуховые аппараты, работающие в широком частотном диапазоне.

Однако при некоторых тяжелых формах тугоухости и глухоты слуховые аппараты не помогают больным. Это имеет место, например, когда глухота связана с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Такие поражения могут быть вызваны неправильной дозировкой лекарственных препаратов, применяемых для лечения заболеваний, совсем не связанных с лор-болезнями. В настоящее время возможна частичная реабилитация слуха и у таких больных. Для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула. Такое протезирование основной функции улитки осуществляется с помощью кохлеарных протезов.

Тимпанометрия - метод измерения податливости звукопроводящего аппарата слуховой системы под влиянием аппаратного изменения воздушного давления в слуховом проходе.

 

Данный метод позволяет оценить функциональное состояние барабанной перепонки, подвижность цепи слуховых косточек, давление в среднем ухе и функцию слуховой трубы. Исследование начинается с установки зонда с надетым на него ушным вкладышем, который герметично перекрывает слуховой проход в начале наружного слухового прохода. Через зонд в слуховом проходе создается избыточное (+) или недостаточное (-) давление, а затем подается звуковая волна определенной интенсивности. Дойдя до барабанной перепонки, волна частично отражается и возвращается к зонду.

Измерение интенсивности отраженной волны позволяет судить о звукопроводящих возможностях среднего уха. Чем больше интенсивность отраженной звуковой волны, тем меньше подвижность звукопроводящей системы. Мерой механической податливости среднего уха является параметр подвижности, измеряемый в условных единицах.

2. Дисперсия импеданса. Реография.

На рисунке 15.8 представлен график частотной зависимости импеданса мышечной ткани, полученный экспериментально (масштаб на вертикальной оси - логарифмический).

 

На графике четко проявляются три интервала частот, в которых величина Z медленнее меняется с частотой по сравнению с общим ходом кривой. Они названы областями α-, β- и γ-дисперсии соответственно. Им соответствуют три области частот: низкие частоты ν < 10 кГц, радиочастоты ν = 0,1-10 МГц, микроволновые частоты ν > 0,1 ГГц.

Наличие областей α-, β- и γ-дисперсии связано с частотной дисперсией диэлектрической проницаемости (ε = f(v)), от которой зависит величина емкости (см. формулу 10.20). На рисунке 15.9 показаны структурные элементы, вносящие основной вклад в поляризацию ткани на различных частотах:

- α-дисперсия обусловлена поляризацией целых клеток (1, 2) в результате диффузии ионов, что требует относительно большого времени, поэтому данный механизм проявляется при действии электрического поля низкой частоты (0,1-10 кГц). В этой области емкостное сопротивление мембран велико и преобладают токи, протекающие через растворы электролитов, окружающие фрагменты мембран.

- β-дисперсия обусловлена структурной поляризацией клеточных мембран (3), в которой участвуют белковые макромолекулы (4), а на ее верхней границе - глобулярные водорастворимые белки (5), фосфолипиды (6, 7) и мельчайшие субклеточные структуры

- γ-дисперсия обусловлена процессами ориентационной поляризации молекул (9, 10) свободной и связанной воды, а также низкомолекулярных веществ типа сахаров и аминокислот.

В частотных диапазонах, соответствующих главным областям дисперсии, происходят наибольшие потери энергии переменного электрического тока (поля). Выделение энергии происходит на том структурном уровне, который отвечает за данную область диспер-

сии. На этом основано действие различных методов физиотерапии с использованием переменных токов и полей.

Импеданс ткани зависит не только от частоты, но и от состояния ткани. Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма. Это используют при пересадке (трансплантации) тканей и органов.

Реография - диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности. Эти изменения представляются в виде реограммы. С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени, конечностей. Исследование реограмм применяют в диагностике заболеваний периферических кровеносных сосудов, сопровождающихся изменением их эластичности, сужением артерий и т.д.

БИЛЕТ №25
1). Использование УЗ в медицине: терапии, хирургии, диагностике.
Применение ультразвука в терапии и хирургии

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель - вызвать управляемое избирательное разрушение в тканях.
Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.





Дата публикования: 2015-02-03; Прочитано: 499 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...